Publikacja
Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride |
Hoang V.T., Kasztelanic R., Filipkowski A., Stępniewski G., Pysz D., Klimczak M., Ertman S., Long V.C., Woliński T.R., Trippenbach M, Xuan K.D., Śmietana M. and Buczyński R. |
Optical Materials Express9(5), 2019, 2264-2278, 10.1364/OME.9.002264 |
All-normal dispersion supercontinuum generation (SG) in a large hollow core photonic crystal fiber (PCF) infiltrated with carbon tetrachloride is studied experimentally. The PCF is optimized to have a flat normal dispersion in a broadband range (0.8–1.7 µm) varying from -150 to 0 ps/nm/km. The effective mode area at pump wavelength (λ=1030 nm) is as large as 42.2 µm2 and readily meets the requirements for an all-fiber supercontinuum system. Infiltration of the core with carbon tetrachloride ensures a high nonlinear coefficient of the fiber equal to 22 1/W/km. Using an off-the-shelf 1030 nm fiber laser with 400 fs and 25 nJ input pulses, we generated an all-normal supercontinuum in the 850–1250 nm wavelength range.