Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm

Stepniewski, G.; Klimczak, M.; Bookey, H.; Siwicki, B.; Pysz, D.; Stepien, R.; Kar, AK.; Waddie, AJ.; Taghizadeh, MR.; Buczynski, R.

Laser Physics Letters

11, 2014, art. 055103, 10.1088/1612-2011/11/5/055103

We report on octave-spanning supercontinuum generation under pumping with 1360 nm, 120 fs pulses, in an all-solid, all-normal dispersion photonic crystal fiber. The fiber was drawn from thermally matched oxide soft glasses with a hexagonal lattice 35 µm in diameter, 2.5 µm solid core and pitch of Λ/d = 0.9. The fiber was designed for normal dispersion broadly flattened in the 1200–2800 nm range. Experimentally recorded supercontinuum spectrum covered a 900–1900 nm bandwidth and was reconstructed with good agreement using numerical modeling. To the best of our knowledge, this is the first report of an experimentally demonstrated octave-spanning supercontinuum bandwidth, reaching as far as 1900 nm in the all-normal dispersion regime.