Publikacja
Symmetry Invariant Solutions in Atmospheric Boundary Layers |
Yano J.-I., Wacławczyk M. |
Journal of the Atmospheric Sciences81(2), 2024, pp. 263-277, 10.1175/JAS-D-23-0168.1 |
The symmetries of the governing equations of atmospheric flows constrain the solutions. The present study applies those symmetries identified from the governing equations to the atmospheric boundary layers under relatively weak stratifications (stable and unstable). More specifically, the invariant solutions are analyzed, which conserve their forms under possible symmetry transformations of a governing equation system. The key question is whether those invariant solutions can rederive the known vertical profiles of both vertical fluxes and the means for the horizontal wind and the potential temperature. The mean profiles for the wind and the potential temperature in the surface layer predicted from the Monin–Obukhov theory can be recovered as invariant solutions. However, the consistent vertical fluxes both for the momentum and heat no longer remain constant with height, as assumed in the Monin–Obukhov theory, but linearly and parabolically change with height over the dynamic sublayer and the above, respectively, in stable conditions. The present study suggests that a deviation from the constancy, though observationally known to be weak, is a crucial part of the surface-layer dynamics to maintain its symmetry consistency.