IGF


zdjęcie-Electrically tunable Berry curvature and strong light-matter coupling in liquid crystal microcavities with 2D perovskite

Electrically tunable Berry curvature and strong light-matter coupling in liquid crystal microcavities with 2D perovskite

AUTHORS:

Łempicka-Mirek K., Król M., Sigurdsson H., Wincukiewicz A., Morawiak P., Mazur R., Muszyński M., Piecek W., Kula P., Stefaniuk T., Kamińska M., De Marco L., Lagoudakis P.G., Ballarini D., Sanvitto D., Szczytko J., Piętka B.

ABSTRACT:

The field of spinoptronics is underpinned by good control over photonic spin-orbit coupling in devices that have strong optical nonlinearities. Such devices might hold the key to a new era of optoelectronics where momentum and polarization degrees of freedom of light are interwoven and interfaced with electronics. However, manipulating photons through electrical means is a daunting task given their charge neutrality. In this work, we present electrically tunable microcavity exciton-polariton resonances in a Rashba-Dresselhaus spin-orbit coupling field. We show that different spin-orbit coupling fields and the reduced cavity symmetry lead to tunable formation of the Berry curvature, the hallmark of quantum geometrical effects. For this, we have implemented an architecture of a photonic structure with a two-dimensional perovskite layer incorporated into a microcavity filled with nematic liquid crystal. Our work interfaces spinoptronic devices with electronics by combining electrical control over both the strong light-matter coupling conditions and artificial gauge fields.

Science Advances, 2022, vol. 8(40), art. eabq7533, doi: 10.1126/sciadv.abq7533


Opublikowano dnia - 10 października 2022 09:05
Ostatnia zmiana - 14 października 2022 15:27
Publikujący - Sekretariat IGF


Cofnij