Research group


Information Optics Department

Research Group Leader:

The efficiency of interaction of light with matter is determined by the latters composition and spatial distribution. In fact, the same amount of a certain material but with a different structural arrangement can lead to a very good mirror, (near) perfect blackness, or a mulitcolored spectrum. In the group, we investigate how the spatial configuration of matter on a nanometer scale affects its interaction with light and how these phenomena can be used in the construction of more efficient devices. In our research, we use the knowledge of optics, electrodynamics, and selected elements of solid state theory. We mainly deal with computer modeling and the development of analytical models, and we test our predictions and models in cooperation with the Faculty of Physics as well as with research groups at the Chalmers University of Technology and Universidad Autónoma de Madrid. Our research is part of the global development of functional metamaterials and nanophotonics.

Currently, our research topics include:

Quantum and nonlocal effects in plasmonic nanostructures with the single nanometers size significantly change the resonance properties causing a red or blue resonance shift depending on the plasmonic material (density of conductivity carriers) and the environment. Knowledge of these effects makes it possible to predict the properties of plasmonic systems and devices based on them.

  • Carmina Monreal, S. Peter Apell, Tomasz J. Antosiewicz, Quantum-size effects in visible defect photoluminescence of colloidal ZnO quantum dots: a theoretical analysis, Nanoscale 10, 7016-7025 (2018).
  • Carmina Monreal, S. Peter Apell, Tomasz J. Antosiewicz, Infrared absorption and hot electron production in low-electron-density nanospheres: A look at real systems, J. Phys. Chem. Lett. 8, 524-530 (2017).
  • Carmina Monreal, Tomasz J. Antosiewicz, S. Peter Apell, Diffuse surface scattering and quantum size effects in the surface plasmon resonances of low-carrier-density nanocrystals, J. Phys. Chem. C 120, 5074-5082 (2016).
  • Carmina Monreal, Tomasz J. Antosiewicz, S. Peter Apell, Diffuse surface scattering in the plasmonic resonances of ultralow electron density nanospheres, J. Phys. Chem. Lett. 6, 1847-1853 (2015).

Optical resonators made of dielectrics enable efficient coupling of matter and light without dissipation losses in metals.

  • Ruggero Verre, Lei Shao, Nils Odebo Länk, Pawel Karpiński, Andrew B. Yankovich, Tomasz J. Antosiewicz, Eva Olsson, Mikael Käll, Metasurfaces and colloidal suspensions composed of 3D chiral Si nanoresonators, Adv. Mater. 29, 1701352 (2017).

Plasmonic antenna-reactor systems for efficient catalysis, thanks to which we can efficiently use rare catalytic materials such as platinum, palladium, rhodium, and others. By coupling them with optical antennas, we can increase the absorption of light and the generation of hot electrons, which are responsible for the photocatalytic reactions.

  • Carmina Monreal, S. Peter Apell, Tomasz J. Antosiewicz, Infrared absorption and hot electron production in low-electron-density nanospheres: A look at real systems, J. Phys. Chem. Lett. 8, 524-530 (2017).
  • Zhong-Jian Yang, Tomasz J. Antosiewicz, Ruggero Verre, F. Javier Garcia de Abajo, S. Peer Apell, Mikael Käll, Ultimater limit of light extinction by nanophotonic structures, Nano Lett. 15, 7633-7638 (2015).
  • Tomasz J. Antosiewicz, Carl Wadell, Christoph Langhammer, Plasmon-assisted indirect light absorption engineering in small transition metal catalyst nanoparticles, Adv. Opt. Mater. 3, 1591-1599 (2015).
  • Tomasz J. Antosiewicz, S. Peter Apell, Optical enhancement of plasmonic activity of catalytic metal nanoparticles, RSC Adv. 5, 6378-6384 (2015).

Effective properties of the stochastic agglomerates of nanoparticles provide a simple but very effective way to account for optical properties without going into microscopic structural details. The description of two- or multi-component materials comes down to the use of simple, effective electric permeability, which includes all interactions taking place inside the material.

  • Krzysztof M. Czajkowski, Dominika Świtlik, Christoph Langhammer, Tomasz J. Antosiewicz, Effective Optical Properties of Inhomogeneously Distributed Nanoobjects in Strong Field Gradients of Nanoplasmonic Sensors, Plasmonics (2018). https://doi.org/10.1007/s11468-018-0769-4
  • Tomasz J. Antosiewicz, Tomasz Tarkowski, Localized surface plasmon decay pathways in disordered two-dimensional nanoparticle arrays, ACS Photonics 2, 1732-1738 (2015).
  • Tomasz J. Antosiewicz, S. Peter Apell, Plasmonic glasses: Optical properties of amorphous metal-dielectric composites, Opt. Express 22, 2031-2042 (2014).

Strong coupling between light and matter opens new possibilities for controlling light, in which hybrid resonances possess properties of both components. It is possible since in this state the energy exchange between the photonic and material subsystems (e.g. exciton) occurs faster than any dissipation. This leads to the emergence of qualitatively new states that make it possible to observe, for example, single-photon nonlinearities, optical logic systems, or to control chemical reactions.

  • Battulga Munkhbat, Martin Wersäll, Denis G. Baranov, Tomasz J. Antosiewicz, Timur Shegai, Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas, Sci. Adv. 4, eaas9552 (2018).
  • Jorge Cuadra, Denis G. Baranov, Martin Wersäll, Ruggero Verre, Tomasz J. Antosiewicz, Timur Shegai, Observation of tunable charged exciton polaritons in hybrid monolayer WS2–plasmonic nanoantenna system, Nano Lett. 18, 1777-1785 (2018).
  • Martin Wersäll, Jorge Cuadra, Tomasz J. Antosiewicz, Sinan Balci, Timur Shegai, Observation of mode splitting in photoluminescence of individual plasmonic nanoparticles strongly coupled to molecular excitons, Nano Lett. 17, 551-558 (2017).
  • Zhong-Jian Yang*, Tomasz J. Antosiewicz*, Timur Shegai. Role of material loss and mode volume of plasmonic nanocavities for strong plasmon-exciton interactions, Opt. Express 24, 20373-20381 (2016).
  • Gülis Zengin, Martin Wersäll, Sara Nilsson, Tomasz J. Antosiewicz, Mikael Käll, Timur Shegai, Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions, Phys. Rev. Lett. 114, 157401 (2015).
  • Tomasz J. Antosiewicz, S. Peter Apell, Timur Shegai, Plasmon-exciton interactions in a core-shell geometry: From enhanced absorption to strong coupling, ACS Photonics 1, 454-463 (2014).

Plasmonic sensors use an amplified electromagnetic field near a metal surface to measure changes of the refractive index that are caused by material and structural changes in that field. These sensors operate based on plasmonic resonance, which occurs for metallic structures with appropriate geometries. Its resonance frequency depends on the size of the structure, material, geometry, and the environment. Changing any of these parameters results in a resonance shift so one can track these changes over time. Very high amplification of the electromagnetic field enables the detection of even single molecules and other effects occurring on the nanometer scale.

  • Ferry A. A. Nugroho, Rickard Frost, Tomasz J. Antosiewicz, Joachim Fritzsche, Elin M. Larsson Langhammer, Christoph Langhammer, Topographically flat nanoplasmonic sensor chips for biosensing and materials science, ACS Sensors 2, 119-127 (2017).
  • Ferry A. A. Nugroho, Amaia Diaz de Zerio Mendaza, Camilla Lindqvist, Tomasz J. Antosiewicz, Christian Müller, Christoph Langhammer, Plasmonic nanospectroscopy for thermal analysis of organic semiconductor thin films, Anal. 89, 2575-2582 (2017).
  • Srdjan S Aćimović, Hana Šípová, Gustav Emilsson, Andreas B Dahlin, Tomasz J Antosiewicz, Mikael Käll, Superior LSPR substrates based on electromagnetic decoupling for on-a-chip high-throughput label-free biosensing, Light: Sci. 6, e17042 (2017).
  • Svetlana Alekseeva, Alice Bastos da Silva Fanta, Beniamino Iandolo, Tomasz J. Antosiewicz, Ferry Anggoro Ardy Nugroho, Jakob B. Wagner, Andrew Burrows, Vladimir P. Zhdanov, Christoph Langhammer, Grain boundary mediated hydriding phase transformations in individual polycrystalline metal nanoparticles, Nature Commun. 8, 1084 (2017).
  • Joachim Fritzsche, David Albinsson, Michael Fritzsche, Tomasz J. Antosiewicz, Fredrik Westerlund, Christoph Langhammer, Single particle nanoplasmonic sensing in individual nanofluidic channels, Nano Lett. 16, 7857-7864 (2016).
  • Tomasz J. Antosiewicz, Mikael Käll, A multiscale approach to modeling plasmonic nanorod biosensors, J. Phys. Chem. C 120, 20692-20701 (2016).
  • Svetlana Syrenova, Carl Wadell, Ferry A. A. Nugroho, Tina A. Gschneidtner, Yuri A. Diaz Fernandez, Giammarco Nalin, Dominika Świlik, Frederik Westerlund, Tomasz J. Antosiewicz, Vladimir P. Zhdanov, Kasper Moth-Poulsen, Christoph Langhammer, Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape, Nature Mater. 14, 1236-1244 (2015).
  • Virginia Claudio, Andreas B. Dahlin, Tomasz J. Antosiewicz, Single-particle plasmon sensing of discrete molecular events: Binding position versus signal variations for different sensor geometries, J. Phys. Chem. C 118, 6980-6988 (2014).



Research project

dr hab. Tomasz Antosiewicz
mgr Maria Bancerek
dr Katarzyna Kluczyk-Korch
dr Rania Zaier


Olga Kochanowska
byli współpracownicy:
Ami Dineshbhai Patel
Dominik Suwała
mgr Krzysztof Czajkowski
mgr Dominika Świtlik