IGF



"Achromatic nanostructured gradient index microlenses"

AUTHORS:

Buczynski R., Filipkowski A., Piechal B., Nguyen H.T., Pysz D., Stepien R., Waddie A., Taghizadeh M.R., Klimczak M. and Kasztelanic R.

ABSTRACT:

We present a development of microlenses achromatically corrected in near-infrared spectral windows. We show that the standard fiber drawing technology can be successfully applied to the development achromatic gradient index microlenses by means of internal nanostructurization. These gradient index microlenses can achieve similar performance to standard aspheric doublets, while utilizing a simpler, singlet element geometry with flat surfaces. A nanostructured lens with a parabolic profile was designed using a combination of the simulated annealing method and the effective medium approximation theory. Measurements on the fabricated lenses show that the microlenses have a nearly wavelength-independent focal plane at a distance of about 35 μm from the lens facet over the wavelength range of 600–1550 nm. The successful design and fabrication of achromatic flat-parallel rod microlenses opens new perspectives for micro-imaging systems and wavelength-independent coupling into optical fibers.

Optics Express, 2019, vol. 27(7), pp. 9588-9600, doi: 10.1364/OE.27.009588


Originally published on - April 8, 2019, 2:42 p.m.
Last update on - May 24, 2019, 2:05 p.m.
Publisher - Sekretariat IGF


Back