How to model the evolution of the polluted PBL?

Exploring a new approach

Florczyk, G. M.¹, Markowicz, K.¹ and Witek, M. L.²

¹Institute Of Geophysics, University Of Warsaw, Warsaw, Poland ²Jet Propulsion Laboratory, California Institute Of Technology, Pasadena, California

The presentation plan

- 1. Introduction
- 2. What is the Eddy Diffusivity/Mass Flux scheme?
- 3. What is the LaFuLiou Radiation transfer model?
- 4. How were these two models joined together?
- 5. A quick look at the results + Bonus (?)
- 6. Summary and references

1. Introduction

Motivation

- Cities of Poland often experience a carbon-based pollution, concentrated mainly in the PBL
- The PBL diurnal cycles and its evolution affects the aerosol spatial distribution and therefore influences the radiation transfer
- Our group collected a lot of data concerning the radiation fluxes and aerosol concentration in the PBL

Idea: Let's try to join a model describing the PBL evolution and the radiative transfer model

fig. 1 - The panorama of Krakow, Poland on 29th Nov 2019. Taken from the deck of an observation balloon located near the Wawel Castle

Scientific motivation

- There exists the feedback loop between the height of the planetary boundary layer (PBL) and the concentration of absorbing aerosols
- When a decreasing aerosol structure is present, the heating effect strengthens vertical convection
- When an inverse aerosol structure is present, the heating effect facilitate the formation of temperature inversion

Decreasing structure

Inverse structure

fig. 2 - Schematic diagrams describing aerosol-PBL interactions when decreasing and inverse aerosol structures are present^[1].

What is Polluted PBL?

Planetary Boundary Layer, in which there is a non-zero concentration of absorbing aerosol.

Other descriptions found in literature:

- All-sky conditions
- Aerosol-filled PBL
- PBL with aerosols
- Avoiding directly referring to it and insead using 'Aerosol-PBL interactions' (API).
- PBL

2. Eddy Diffusivity/Mass Flux scheme

What is the EDMF model?

- Eddy Diffusivity: addressing downward fluxes
- Mass Flux: addressing the limitations of the ED. Introducing a strong thermal updraft motion

fig. 3 - The simplistic drawing depicting the EDMF $$\rm framework^{[1]}$$

The core idea behind EDMF

In the Eddy diffusivity scheme, normally we would have:

$$\overline{w'\theta'} = -K\frac{\partial\bar{\theta}}{\partial z} \tag{1}$$

Where K is eddy diffusivity coefficient. Unfortunately, this approach gives wrong predictions on the top of the PBL. In order to solve this, the EDMF scheme proposes a following decomposition:

$$\overline{w'\theta'} = a_u \overline{w'\theta'}^u + (1 - a_u) \overline{w'\theta'}^e + a_u (w_u - \bar{w})(\theta_u - \theta_e) \tag{2}$$

where a_u is a small surface area, much smaller than the model domain. This surface is occupied by a strong thermal updrafts penetrating the top of the PBL.

The core idea behind EDMF

$$\overline{w'\theta'} = a_u \overline{w'\theta'}^u + (1 - a_u) \overline{w'\theta'}^e + a_u (w_u - \bar{w})(\theta_u - \theta_e) \tag{2}$$

We can further simplify by:

- taking into account that a_u << 1
- approximating θ_e by its mean value
- defining mass flux M = $a_u(w_u w)$

$$\overline{w'\theta'} \approx \overline{w'\theta'}^e + M(\theta_u - \bar{\theta})$$
 (3)

The core idea behind EDMF

$$\overline{w'\theta'} \approx \overline{w'\theta'}^e + M(\theta_u - \bar{\theta}) \tag{3}$$

Finally, we plug back the original eddy diffusivity scheme and get:

$$\overline{w'\theta'} \approx -K \frac{\partial \bar{\theta}}{\partial z} + M(\theta_u - \bar{\theta}) \tag{4}$$

We can now plug it in into the time evolution of the scalar field $\phi^{[2]}$ and get the final prognostic equation in the EDMF framework.

Equations in the EDMF with TKE closure (EDMF-TKE)

The prognostic equation for a scalar field $\phi^{[2]}$:

$$\frac{\partial\bar{\phi}}{\partial t} = \frac{\partial}{\partial z} \left[-K_{\phi} \frac{\partial\bar{\phi}}{\partial z} + M(\phi_u - \bar{\phi}) \right] + F \tag{5}$$

The additional prognostic equation for TKE closure^[2]:

$$\frac{\partial e}{\partial t} = -\frac{\partial}{\partial z} \left(-K_e \frac{\partial e}{\partial z} \right) + \frac{g}{\bar{\theta_v}} \overline{w' \theta'_v} - D \tag{6}$$

+ additional equations for K, M, D, F, ϕ_{μ} etc.

Short description of the implementation

- Written fully in MATLAB
- The model operates in one dimension
- The spatial range: [0; 4] km, the spatial resolution: 20m
- The temporal resolution: 1 min
- Modelling the dry conditions
- The clear-sky case (with the aerosol present)

and other, less relevant settings...

3. LaFuLiou radiation transfer model

LaFuLiou (Ed4-LaRC-FuLiou) radiation transfer model

- developed in NASA Langley Research Center
- Uses the δ -four-stream approach which is a **natural extension** of the popular two-stream radiative transfer model commonly used in atmospheric sciences
- Uses the parameterization proposed by Fu, Liou and Ackermann^[4] which proves to be **relatively accurate and not much more complex**
- The legacy code in fortran works **relatively fast**
- The fortran solver was embedded in the MATLAB shell to make it more user friendly
- Is available for everyone on github*

What parameters were used?

- Spectral resolution: 6 short wave and 12 long wave bands
- Spatial resolution: 78 levels from 0 to 100 km above the ground
- Near the ground (>600 hPa) the grid is denser. In the range [0; 4] km the spatial resolution is 80m
- The clear-sky case (with the aerosol present)
- The sun position was calculated for a user defined DOY and location

and other, less relevant settings...

4. EMDF-TKE/LaFuLiou Coupling

How were these two models combined?

TIME LOOP

fig. 4 - The block diagram showing how two models were joined together in one time loop and how they exchange data

Initial profiles: Potential temperature and Heating rate

fig. 5a - An example of the model output: evolution of the potential temperature with time

fig. 5b - An example of the model output: The evolution of the heating rate with time

Additional remark no. 1: The extinction suppression

profile at the end of the simulation.

The extinction profile was calculated as follows:

$$\mu_e(z) = \begin{cases} \mu_{e,0} & \text{, if } z \le z^* \\ \mu_{e,0} \int_{z^*}^{\infty} e^{-\frac{z-z^*}{H}} & \text{, if } z > z^*. \end{cases}$$
(7)

with the normalisation condition:

$$\tau_a = \int_0^\infty \mu_e(z) dz \tag{8}$$

or after the integration:

$$\tau_a = \mu_{e,0}(z^* + H) \tag{9}$$

Additional remark no. 2: The scattering enhancement factor

The extinction profile was additionally multiplied by:

$$f(RH) = \left(\frac{1 - RH}{1 - RH_{REF}}\right)^{\gamma}$$

(10)

Where γ is the scattering enhancement coefficient and RH_{REF} is the reference relative humidity for which the γ was derived experimentally.

In our simulations:

5. Results

Polluted PBL evolution under different pollution levels.

fig. 8a - The evolution of the PBL temperature with time

fig. 8b - The evolution of the PBL temperature with time

Polluted PBL evolution under different pollution levels.

fig. 9a - The evolution of the PBL temperature with time

fig. 9b - The evolution of the PBL temperature with time

Polluted PBL evolution under different aerosol compositions

fig. 10a - The evolution of the PBL temperature with time

fig. 10b - The evolution of the PBL temperature with time

Polluted PBL evolution under different aerosol compositions

fig. 11a - The evolution of the PBL temperature with time

fig.11b - The evolution of the PBL temperature with time

Additional remark no. 3: Explaining additional parameters

Additional remark no. 3: Explaining additional parameters

Additional remark no. 3: Explaining additional parameters

The PBL Height vs Aerosol optical depth

The PBL mean temperature difference vs Aerosol optical depth

The PBL Height vs Aerosol single scattering albedo

fig. 15a - The PBLH vs SSA. The extinction suppression: 0.1 km

The PBL mean temperature difference vs Aerosol single scattering albedo

5+. Bonus - The extinction suppression

Additional remark no. 4: The extinction suppression H

The extinction profile was calculated as follows:

$$\mu_e(z) = \begin{cases} \mu_{e,0} & \text{, if } z \le z^* \\ \mu_{e,0} \int_{z^*}^{\infty} e^{-\frac{z-z^*}{H}} & \text{, if } z > z^*. \end{cases}$$
(7)

with the normalisation condition:

$$\tau_a = \int_0^\infty \mu_e(z) dz \tag{8}$$

or after the integration:

$$\tau_a = \mu_{e,0}(z^* + H) \tag{9}$$

PBL Evolution under different pollution levels

fig. 18a - The evolution of the PBL temperature with time. SSA = 0.8, H = 1 km fig. 18b - The evolution of the PBL temperature with time. SSA = 0.99, H = 1 km

PBL Evolution under different aerosol compositions

fig. 19a - The evolution of the PBL temperature with time. AOD = 0.1, H = 1 km fig. 19b - The evolution of the PBL temperature with time. AOD = 1.0, H = 1 km

The PBL Height vs Aerosol optical depth

38

The PBL mean temperature difference vs Aerosol optical depth

The PBL Height vs Aerosol single scattering albedo

40

The PBL mean temperature difference vs Aerosol single scattering albedo

Summary

- The coupled model is relatively fast: 6 h of simulation with 1 min time step took about 1 min to run on a standard personal PC
- Output suggests:
 - Non-absorbing aerosol and low amounts of aerosol have a small impact on the PBLH and the temperature difference
 - The more absorbing the aerosol, the higher the temperature of the PBL
 - The more polluted the PBL the higher its temperature
- The extinction profile suppression effect:
 - $\circ \quad \text{Low suppression} \quad \rightarrow \text{Aerosol above the PBL} \qquad \rightarrow \text{Smaller PBLH}, \quad \text{Lower Temperature}$
 - High suppression \rightarrow Aerosol only in PBL
- \rightarrow Higher PBLH, Higher Temperature

Further possible improvements

- Implementation of a better surface model
- Improvements of the PBLH calculation
- Adding a faster way of data exchange between the MATLAB Shell and Fortran solver
- Verifying the model with experimental data
- Maybe (?) refactoring the Fortran solver. Update from Fortran 77 and Fortran 90 to Fortran 2018
- Providing more user friendly interface

References

[1] Su, T., Li, Z., Li, C., Li, J., Han, W., Shen, C., Tan, W., Wei, J., & Guo, J. (2020). The significant impact of aerosol vertical structure on lower atmosphere stability and its critical role in aerosol-planetary boundary layer (PBL) interactions. Atmospheric Chemistry and Physics, 20(6), 3713–3724. https://doi.org/10.5194/acp-20-3713-2020

[2] Siebesma, A. P., Soares, P. M. M., Teixeira, João (2007) A Combined Eddy-Diffusivity Mass-Flux Approach for the Convective Boundary Layer. *Journal of The Atmospheric Sciences*, 64, 1230–1248, doi: 10.1175/JAS3888.1

[3] Witek, M., L., J. Teixeira, G. Matheou (2010), An Integrated TKE-Based Eddy Diffusivity/Mass Flux Boundary Layer Closure for the Dry Convective Boundary Layer, *Journal of the Atmospheric Sciences*, 68, 1526, doi: 10.1175/2011JAS3548.1

[4] Liou, K. & Fu, Q. & Ackerman, T. (1988). A Simple Formulation of the Delta-Four-Stream Approximation for RadiativeTransferParameterizations.JournaloftheAtmosphericSciences.10.1175/1520-0469(1988)045<1940:ASFOTD>2.0.CO;2.

[5] GitHub - fredgrose/Ed4_LaRC_FuLiou: Edition 4 version of LaRC FuuLiou Broadband Correlated K Sw & Lw Radiative Transfer code

Thank you for your attention!

G. M. Florczyk: gflorczyk@fuw.edu.pl K. Markowicz: Krzysztof.Markowicz@fuw.edu.pl M. L. Witek: marcin.l.witek@jpl.nasa.gov

Acknowledgements:

Research conducted within the project: Aerosol impact on microphysical, optical and radiation properties of fog (UMO-2017/27/B/ST10/00549) of National Science Centre.

fig. 1 - The panorama of Krakow, Poland on 29th Nov 2019. Taken from the deck of an observation balloon located near the Wawel Castle