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Stratocumulus clouds = flat cloud sheets that shade Earth
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pure liquid stratocumulus (Wood et al. 2012):
occurs above all ocean basins, but predominantly in the subtropics; 
reflect between 27-38% of solar radiation



(Possner et al., Geophys. Res. Lett., 2017)
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mixed-phase stratocumuli (Morrison et al. 2012):
contain liquid and ice, are thermodynamically unstable, but persist for 
days

pure liquid stratocumulus (Wood et al. 2012):
occurs above all ocean basins, but predominantly in the subtropics; 
reflect between 27-38% of solar radiation
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MAM JJA SON DJF

(Korolev et al. 2017)

phase classification based on active remote sensing (2006-2010)
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Outline of talk

INP = ice nucleating particle

 Origins of cloud ice

 Cloud radiative effects

 Cloud regime changes
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Where does the ice come from – part I

primary nucleation governed by immersion freezing (Murray et al. 2012)

T<Tcrit

 dust are very good INP (Murray et al. 2012, Brunner et al. 2021)
 

 sea spray are also good INP (DeMott et al. 2016)
 

 anthropogenic aerosol (black carbon, organic carbon) are 
inefficient in this regime (Wex et al. 2019)

INP = ice nucleating particle, T=temperature
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Measurements in the field

Ttop~ -17ºC

(Utquiagvik)

Prenni et al. (2007)
INP: 0.16 l-1 Ni: 0.8 l-1

McFarquhar et al. (2007)

?

M-PACE: 09.10. - 10.10. 2004 (Verlinde et al. 2007)

more ice crystals than INP

Ni = ice crystal number concentration
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Just uncertainty?

Ni = ice crystal number concentration

Vergara-Temprado et al. (2018)

→ large uncertainty between INP measurements 
    (Hiranuma et al. 2015)

M-PACE
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Just uncertainty? - No

Ni = ice crystal number concentration

→ increasing empirical and observed 
evidence for SIP in mixed-phase 
stratocumuli 
(Rangno & Hobbs 2001, Luke et al. 2021, Pasquier et 
al. 2022)

Pasquier et al. (2022)
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Where does the ice come from – part II

[Fig. 3 Sotiropoulou et al. 2020a]

Lauber et al. (2018)

Secondary ice production (SIP)
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Where does the ice come from – part II

[Fig. 3 Sotiropoulou et al. 2020a]

Lauber et al. (2018)

Secondary ice production (SIP)
GCMs

x

x
x

GCM = global climate model
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Where does the ice come from – part II

Secondary ice production (SIP)

[Fig. 3 Sotiropoulou et al. 2020a]

Lauber et al. (2018)

 SIP through ice phase can close gap between 
observed Ni and INP in relatively warm (Tct > 
-5°C) Arctic MPCs (Sotiropoulou et al. 2020a).
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Where does the ice come from – part II

Secondary ice production (SIP)

[Fig. 3 Sotiropoulou et al. 2020a]

Lauber et al. (2018)

 SIP through ice phase can close gap between 
observed Ni and INP in relatively warm (Tct > 
-5°C) Arctic MPCs (Sotiropoulou et al. 2020a).

 Process less efficient at cold temperatures (Tct 
< -10°C) and implementation dependent on 
rimed fraction (RF) and crystal shape 
assumptions (Sotiropoulou et al. 2020b, Zhao et al. 2021).
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Where does the ice come from – part II

Secondary ice production (SIP)

[Fig. 3 Sotiropoulou et al. 2020a]

Lauber et al. (2018)

 SIP through ice phase can close gap between 
observed Ni and INP in relatively warm (Tct > 
-5°C) Arctic MPCs (Sotiropoulou et al. 2020a).

 Process less efficient at cold temperatures (Tct 
< -10°C) and implementation dependent on 
rimed fraction (RF) and crystal shape 
assumptions (Sotiropoulou et al. 2020b, Zhao et al. 2021).

 Warm cloud bases are needed to generate 
sufficiently large raindrops for efficient 
fragmentation through droplet freezing 
(Sullivan et al. 2018).
 

Rain freezing
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Idealised M-PACE simulations

M-PACE: 09.10. - 10.10. 2004 (Verlinde et al. 2007)

Ttop~ -17ºC

(Utquiagvik)

INP: 0.16 l-1

Ni: 0.8 l-1

 Δx,Δt,Δz: 125m, 1s, 25m
 fixed large-scale forcing & advection (Klein et al. 2009) 
 2M bulk microphysics parameterisation (Seifert & Beheng, 2006) 
 + Break up (Phillips et al. 2017)

+ Droplet shattering (Phillips et al. 2018)

200x200 grid points, 24h (one diurnal cycle)
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Parameterisation collisional breakup

Based on mechanical 
energy

Collisional kinetic energy
surface area

#density of asperities in collisional
surface cross section

Phillips et al. 2017
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Impact on Ni and LWP

re
mo

t e 
se

ns
in g



apossner@iau.uni-frankfurt.de

Impact on Ni and LWP

Collisional breakup does not produce stable mixed-phase cloud with correct ice-phase properties
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Impact on Ni and LWP
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Simulations with droplet shattering (+ potential amplification by breakup)  
match ice & liquid-phase observations
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Impact on Ni and LWP

SIP once triggered is self-sustaining over at least 14 hours
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Summary: Origins of cloud ice

 immersion freezing is dominant primary nucleation mechanism
 

 building evidence of SIP, BUT:
 

 mechanistic understanding incomplete
 

 insufficiently constrained by observations
 

 model implementations strongly dependent on 
assumptions

-> regions of enhanced research activity: Arctic, Atlantic cold air outbreaks, Southern Ocean
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INP = ice nucleating particle

 Origins of cloud ice

 Cloud radiative effects

 Cloud regime changes
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Impact on surface radiation

(convention: +ve downward)

time [h]

CCN60
CCN300
CCN600
CCN1200

difference in net surface radiation ~ SW + LW + LW

(SW  ~ 0 Wm-2 at sfc)

CCNref=30 cm-3
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Impact on surface radiation

shut off of rain suppresses ice-phase and WBF 
depletion of LWP

(convention: +ve downward)

time [h]

CCN60
CCN300
CCN600
CCN1200

CCNref=30 cm-3
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Impact on surface radiation

deeper cloud increases warming

time [h]

CCN60
CCN300
CCN600
CCN1200

temperature

height

Tct_ref
Tct_noice

Tct= cloud-top temperature

CCNref=30 cm-3
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Impact on surface radiation

 LW compensates SW and net radiative impact is moderate

(convention: +ve 
downward)

daily avg [Wm-2]
CCN60:   0.3
CCN300:  -3.1
CCN600:  -4.0
CCN1200:  -4.3

time [h]
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Impact on surface radiation

 LW compensates SW and net radiative impact is moderate

(convention: +ve downward)

daily avg [Wm-2]
CCN60:   0.3
CCN300:  -3.1
CCN600:  -4.0
CCN1200:  -4.3

time [h]

at lower latitudes SW radiative effect
dominates!
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Southern Ocean radiative bias in ICON

BIAS 80km [Wm-2]

→radiative bias in SO 8 Wm-2

→ underestimation of supercooled
     low-level cloud water
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Cloud phase feedback and climate sensitivity

warming climate

-ve cloud feedback
Tct<0 Tct>0

 Supercooled liquid and SW  overestimated in previos generation of
 climate models (Bodas-Salcedo et al. 2014)

 cloud-phase feedback overestimated in CMIP5 models (Tan et al. 2016)
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Cloud phase feedback and climate sensitivity

warming climate

-ve cloud feedback
Tct<0 Tct>0

 Supercooled liquid and SW  overestimated in previos generation of
 climate models (Bodas-Salcedo et al. 2014)

 cloud-phase feedback overestimated in CMIP5 models (Tan et al. 2016)
 global cloud feedback more positive with bias correction

(Zelinka at al. 2020)
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Summary: Cloud radiative effect

 in the Arctic low-level mixed-phase clouds warm the surface 
(annual mean), everywhere else they cool
 

 accurate supercooled liquid cloud amount representation in 
climate models is key for estimates of regional and global 
low-cloud feedback
 

 uncertainties in process understanding limit confidence in 
extrapolation of cloud feedback in extratropics

-> regions of enhanced research activity: Arctic, Atlantic cold air outbreaks, Southern Ocean

BIAS 80km [Wm-2]
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Outline of talk

INP = ice nucleating particle

 Origins of cloud ice

 Cloud radiative effects

 Cloud regime changes
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Importance of mesoscale organisation
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Importance of mesoscale organisation

closed

open

→ cloud pattern influences albedo 
     (McCoy et al. 2017)

pattern

albedo
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Importance of mesoscale organisation

→ cloud pattern influences albedo 
     (McCoy et al. 2017)

→ pattern changes can be associated with
    degree of cloud ice formation (Eirund et al. 
      2019, Tornow et al. 2021)

phase pattern

albedo

?

Tornow et al (2021)
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Importance of mesoscale organisation

→ cloud pattern influences albedo 
     (McCoy et al. 2017)

→ pattern changes can be associated with
    degree of cloud ice formation (Eirund et al. 
      2019, Tornow et al. 2021)

→ no evidence of preconditioning 
     hypothesis in long-term satellite 
     records (Danker et al. 2022)

phase pattern

albedo

?

?

open closed low cloud

mixed
liquid
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Summary: Cloud regimes

 Clouds organise, which constrains their mesoscale variability 
 

 Little is known about potential connections between phase
variability and mesoscale organisation
 

 Going hypothesis of „preconditioning“ (Tornow et al. 2021)
remains to be verified
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The team at GUF looking at cloud physics

www.anna-possner.com
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The team at GUF looking at cloud physics

www.anna-possner.com

2 positions to be filled 
summer this year
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