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Numerical Simulation:
Convective Organization:

precipitation
(a) time= 1 days (b) time= 2 days (e) time= 9 days (f) time=12 days
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(Holloway and Woolnough 2016)



Question:

How Convective Organization is
formed and Maintained?

Basic Approach:

Analysis of the Energy Cycle
In Wavelet Space

Key Concepts:
*Wavelet
*Energy Cycle




Why Wavelet?:

Organization:
Spatial localization:
Effectively Extracted by Wavelet



Wavelet(Discrete Orthogonal:Meyer)

Two indices: |, j:

1.6

localizations:

Jj=1

oo m

k=2i i=0 1

1
- ]
oot

bl LV

|

-

=2
OO o

1
-]
. '

N
N —=0O =ML

=8
) —= - 2 P
ooino
als,

0% R 8 B i 12 120 144 140 Th 192 200 ZM 30 =4
=

I=-1: domain average Orthogonal&Complete



Fourier Expansion(Discrete Complete Set)
for a finite periodic domain, [0, L]:
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For any well-behaved function, f(z):
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For any well-behaved function, f(z):
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Wavelet (Discrete Orthogonal:Meyer)

Wavelet-based Decomposition:
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Extraction:

One-Dimensional Demonstration:
Zonal Wind over Western Pacific:
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Extraction of Isolated Feat
One-Dimensional Demon
Zonal Wind over Westerr
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Organized Precipitation
Field : First Four Pulse
Modes
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Organized Precipitation
Field : First Four Pulse
Modes
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Basic Features :

Domain-Averagedrirst 5 Puleses :
Precipitation
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Basic Energy Cycle :

I—S(K} Kinetic Energy Sink

Kinetic Energy

(' Conversion from PE to KE

Available Potential Energy
(Lorenz 1955)

i
o

S(P) Potential Energy Source



Energy Cycle : Differntiated by Scal
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Definitions (Physical
Space)

‘Kinetic K= P2
Energy : 2
‘Available
Potential p_? e
Energy : 20
0, db,
where 0 = :




Definitions (Wavelet

Space)

- - 1 -
‘Kinetic K; = =(pv);vy,
Energy : 2
‘Available |
Potential Py =—(p0),0,,.
Energy : 20

0,,db,
where 0 =

g dz



Energy Cycle (Physical Space)
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Energy Cycle (Wavelet Space)

d = YA s T = . T
= Ky — Ni(K) = F(K) + Ci(P,K) + 5(K)

= —aP — Ni(P) = —Ci(P, K) + §(P)

Energy Conversion Rate :
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Fi(K)= FLu(K) + FLv(K)
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ypectrum Evolution:

max(l,ky) max(l,ky)

Plko,ky)= > > &

=1l Jy=1
Precipitation Kinetic Energy
precipitation KE
(a) time= 1 days (b) time= 2 days (a) time=16 hours (b) time=18 hours
_ | | | | | | | [ _ | | | | | [ _ | | | | | | | [ I
64 0.50 64 050 64 :
32 fiill 32 I 32 i
16 B 16 i 16 [
8 .8 8
A B C B A -
2 i 2 i 2 i
1 i 1 i 1 i
0_| [ R B B B B 0.0 07 [ R I R B R 0.0 0_| [ R B R B B - ! [
0124k8163284 m/h 0 1 24k8163264 m/h 0124k8163284 J/m3 0 1 24k8163264 J/m
(c) time= 3 days tlme— 7 days (c) time= 2 days (d) time=3.5 days
Y R N N R . [ [ Y IR R | [ R I N I I
64 0.50 B4 0.03
32 32 ]
16 | 16 |
.8 .8 .8
e 4 g
2 2 2
1 1 1
0 o 0
T I [ 0.0 o [ - [ [ 0.0
01 2 4 8163264 mm/h 124 816 32 6 m/h 01248163264 )/ 3 012 4 81632 64 J/m3

Ky Ky Ky Ky



Generation of
Convective

Organizai:tn

Transfer of
Kinetic Energy to
the Larger Scales

: How This Happens ?



Energy Cycle (Wavelet Space)

Kinetic Energy Available Potential

First 10 Days : Energy
time= 0-10 days, KE Days 20-30:
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Process Decomposition:

Choose a Threshold Variable: .

High Component:
E-EH o { f’h

Low Component:

Here,



Process Decomposition:

{ 4 \ wavelet ’ 3\
transformation A
tc A lta:
fx.y.z)= . —>f(l,.1,,7)= A
o) 0]
real space wavelet vectors

A
choose a ntt variable: / ( - ) <«

classify the
wavelet vectors

No

high low
component component




Process Decomposition:
Convective Organization:
Buoyancy-Production Driven
and

Non-Buoyancy-Production
Driven

Components:
Threshold Variable:

¢ = C(P, K)




Energy Cycle : Between Two
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time= 0 days 19 hours

(a) w, Buoyant (b) ¥,, Buoyant
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Nonlinear Energy Transfer

Convective _
Organization Convective Tower




Summary

Wavelet:

*Capacity of Quantifying the “Organization”
effectively:

*Orthogonality and Completeness
* Automatic Windowing
*Many Options with Flexibility

Q: What We Want to Quantify?

Possibility To Be Further Pursued:
Process Study in Wavelet Space

e.g., Energy Cycle (cf., Yano and Plant 2025
JAMES)




Queestions ?
Comments ?



Exmaple of Process Study in Wavelet Space:

Energy-Conversion Cycle

(Yano et al. 2005, QJ):

20010

l,fmz Convective

Kinetic Energy

= o o » 0.0
{b}cz !l.DU
] wm® Conversion Rate
£ EATERNERTRERI R - I
() F # IJI Available Potential
x gm Energy

Localization of modes



Compression:

Let I =1(z,7) with[=0,...,N — 1:

f}c _ {fl: |f:§‘ > foc
0: |f.§‘ {_:ﬂffc

where

Compressed Representation:

N-1

-,

f(x) = [rdr(T)

[=0



CRM Simulation:
TOGA-COARE:
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Wavelet Compression

of 3D CRM Data (TOGA period)

Example of a vertical-section

total condensate + winds
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Decomposition:

Convective and Mesoscale
Components:

Threshold Variable:
¢ =d|v, |/dz




CRM Simulation:
GATE:

Squall-Line Yot
System o)
400 x 400 km?




CRM Simulation:
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CRM Simulation:

GATE:
Scattered

Convection
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Extraction of Isolated Features:

Two-Dimensional Generalization:
Conceptually Straightforward:
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Extraction of Isolated Features:
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Extraction of Isolated Features:
1st Extracted Modes:
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