Atmospheric Physics Seminar, Warsaw

The influence of heterogeneous surfaces on forced and mixed convection

Bettina Frohnapfel

www.kit.edu

Atmospheric Physics Seminar, Warsaw

Thanks to

Institute of Eluid Mechan

@

Bettina Frohnapfel

Kay Schäfer

Lars von Deyn

Jonathan Neuhauser

Davide Gatti Alexander Stroh

Juan Pedro Mellado @ University Hamburg

Deutsche Forschungsgemeinschaft

Overview

- Forced convective flow
 - > over homogeneously rough surfaces
 - > over heterogeneous surfaces
- Mixed convective flow
 - Flow structures over homogeneous (smooth) surfaces
 - > flow structures over heterogeneous surfaces
- Roughness modelling for flows with large scale separation

Heterogeneous surfaces

Hajo Dietz, www.nuernberluftbild.de

www.bnn.de

Nikuradse Diagram for homogeneous roughness in internal flows

Nikuradse sand-grain roughness

equivalent sand grain roughness $k_s = ? \quad (\Delta U^+ = ?)$

roughness does not lead to drag increase in laminar flows

log(Re)

log(friction factor)

Influence of roughness on TBL velocity profile

Flack, K. A., & Schultz, M. P. (2014). Roughness effects on wall-bounded turbulent flows. Physics of Fluids, 26(10), 101305.

Data Generation

the flow property k_s (or ΔU^+) has to be determined for different rough surfaces

pressure drop "measurement" at prescribed flow rate

High precision blower wind tunnel

Friction factor for roughness strips

fully rough regime is basis for roughness predictions

What is the drag behavior of a heterogeneous surface?

Atmospheric Physics Seminar, Warsaw

Roughness strips in forced convection

Experimental set-up does not allow large scale separation beween roughness height and boundary layer thickness

Drag of roughness strips

Atmospheric Physics Seminar, Warsaw

Spanwise inhomogenous roughness

homogeneous roughness

EXPERIMENTAL INVESTIGATION ON SECONDARY CURRENTS IN THE TURBULENT FLOW THROUGH A STRAIGHT CONDUIT*

J. O. HINZE

Fig. 1. Distribution of isovels.

Hinze Appl. Sci. Res. 1973

heterogeneous roughness

Mean flow field above roughness strips

$$h = 0.05\delta$$
$$\frac{s}{\delta} = 2$$

Turbulent Secondary Motions

secondary flow of Prandtl's second kind in forced convection

instantaneous flow field

time-averaged flow field

Stroh et al. JFM 2020; Schäfer et al. JFM 2022

Simplified scenario in literature: ridge type "roughness"

streamwise aligned ridges induce turbulent secondary motions similar to the flow phenomena above roughness strips

Relevance in convective boundary layers?

mixed convection over smooth surfaces (unstable thermal stratification)

NASA earth observatory

temperature field

Relevance in convective boundary layers?

mixed convection over smooth surfaces (unstable thermal stratification)

NASA earth observatory

Mixed convection in turbulent channel flow with smooth walls

instantaneous temperature fluctuations in channel center plane (view from top)

- δ boundary layer thickness
- L Obukhov length scale

Schäfer et al, JFM 2022, accepted

Mixed convection in turbulent channel flow with smooth walls

natural convection

mixed convection

Convective rolls vs turbulent secondary motion

convection rolls smooth channel walls mixed convection turbulent secondary flows structured channel walls forced convection

What is the influence of structured surfaces in mixed convection? (DNS study)

Investigated Parameter Space

Schäfer et al, JFM 2022, accepted

Impact of ridges on convection rolls

instantaneous temperature fluctuations in channel center plane

surface ridges delay emergence of rolls

In-plane motion and streamwise velocity distribution

Schäfer et al, JFM 2022, accepted

Atmospheric Physics Seminar, Warsaw

Global flow properties over ridges

- buoyancy induces larger increase of heat transfer than of momentum transfer
- more ridges → relative importance of momentum transport increases
- formation of rolls (indicated by increase in St/c_f) is delayed by ridges
- additional drag by ridges is important feature

Schäfer et al, JFM 2022, accepted

From convection rolls to convection cells?

convection cells occur earlier and have a preferred orientation on anisotropic structured surface

The challenge of scale separation

Ridges have non-negible height compared to boundary layer thickness

- \rightarrow Is the height critical?
- \rightarrow How to run DNS with "large" scale separation?

Slip length model

turbulent velocity profile

Slip-length boundary condition: $u_i|_{y=0} = I_{s,i} \left. \frac{\partial u_i}{\partial y} \right|_{y=0}$

Slip length model

turbulent velocity profile

Turbulent secondary flow over rough strips

spanwise slip length roughness model

- easy to implement, captures laminar behavior correctly
- reproduces flow phenomena of rough strips
- model is too simplistic to model fully rough flow state (same holds true for ridge type roughness model)
- enables parameter studies

Neuhauser et al. JFM 2022

Effect of transition between smooth and rough domains

formation of turbulent secondary flow does not depend on gradient in boundary condition

Neuhauser et al. JFM 2022

Final remarks

- today's state of the art for roughness predictions rely on fully rough flow state known for homogeneous roughness
- drag prediction for inhomogeneous surfaces is one of the great challenges in roughness research
- Iateral (spanwise) heterogeneity can induce large scale turbulent secondary motions visible in the mean (!) flow field, resemblence of convective rolls to some extend
- two literature models for roughness strips: ridge type and slip type
- > ridges in mixed convection: convective rolls occur later and convective cells occur earlier (smaller Ri or δ/L)

Future points

- Is the impact of strip type roughness onto mixed convection comparable to ridge type roughness?
- Relevance of scale separation in general
- What happens if different surface textures have different heat emissions?
- To which extend is the symmetric set-up of the channel flow DNS comparative to (atmospheric) boundary layer conditions?

Related publications @ ISTM

- The effect of spanwise heterogeneous surfaces on mixed convection in turbulent channels Schäfer, K.; Frohnapfel, B.; Mellado, J.P. 2022. Journal of Fluid Mechanics, accepted
- From drag reducing riblets to drag increasing ridges Deyn, L. H. von; Gatti, D.; Frohnapfel, B. 2022. Journal of Fluid Mechanics, accepted
- Simulation of turbulent flow over roughness strips Neuhauser, J.; Schäfer, K.; Gatti, D.; Frohnapfel, B. 2022. Journal of Fluid Mechanics, 945, Art.-Nr.: A14. doi:10.1017/jfm.2022.536
- Modelling spanwise heterogeneous roughness through a parametric forcing approach Schäfer, K.; Stroh, A.; Forooghi, P.; Frohnapfel, B. 2022. Journal of Fluid Mechanics, 930, A7. <u>doi:10.1017/jfm.2021.850</u>
- Ridge-type roughness: from turbulent channel flow to internal combustion engine Deyn, L. H. von; Schmidt, M.; Örlü, R.; Stroh, A.; Kriegseis, J.; Böhm, B.; Frohnapfel, B. 2022. Experiments in Fluids, 63 (1), 18. <u>doi:10.1007/s00348-021-03353-x</u>
- Rearrangement of secondary flow over spanwise heterogeneous roughness Stroh, A.; Schäfer, K.; Frohnapfel, B.; Forooghi, P. 2020. Journal of Fluid Mechanics, 885, R5. doi:10.1017/jfm.2019.1030
- Secondary flow and heat transfer in turbulent flow over streamwise ridges
 Stroh, A.; Schäfer, K.; Forooghi, P.; Frohnapfel, B.
 2020. International Journal of Heat and Fluid Flow, 81, Article No.108518. doi:10.1016/j.ijheatfluidflow.2019.108518

Thank you!

