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Size: 321 mil km2
Population: 36.8 mil
GDP: 688 mild USD

Emissions: EU legally
binding target of a 55%
reduction by 2030, target
90% by 2040 relative to
1990 emission levels.
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Size: 1729 mil km2
Population: 5.2 mil
GDP: 334 mild USD

Emissions: Legislation - requiring
Queensland to cut emissions by
30 per cent on 2005 levels by
2030, 75 per cent by 2035, and
reach net zero by 2050
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Background

The Queensland Future Climate Science Program

Collaboration between Queensland Government and University of
Queensland;

Dynamically downscaling of future climate simulations;

Translation of climate projections into climate services to underpin
adaptation and preparedness for natural disasters;

Phase 1: 11 CMIP5 GCMs under 2 RCPs with 10 km of resolution over
Queensland.

Phase 2: 11 CMIP6 GCMs (15 ensembles) under 4 SSPs with 10 km of
resolution over Australia.



Team expertise and niche

* Climate modelling * Climate analytics
0 Regional climate modelling 0 Global Climate Models analysis
@ 0 Convection Permitting modelling \ﬁ 0 Regional Climate Models
0 Statistical downscaling (to develop) analysis
* Climate extremes and 5 o g?ta V'Sua'L_Zat'O”
ilas correction
& hazards 0 Generalized Extreme Value
0 Eeatwavc_ers 0 Machine Learning (to develop)
O Extreme Temperature o - -
*;%E 0 Extreme Precipitation ~”‘ ((:)";ntate ;s.cl-:rwces
0 Drouaht » ata portals
0 Wetngess and Floods O Regionalization portals
S 0 Fire Weather »C> 0 Translation of knowledge
0 Tropical Cyclones (storytelling case studies and
.‘“ 0 Convective Extremes + T Zt\?vrglme apprr:)ach).
0 Compound extremes a approach services
o 0 Documentation and

Marine hazards

communication products
Knowledge brokerage



Climate Projections & Services workflow

adaptation and natural
disasters preparedness
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CMIP6 downscaling approach usin

Conformal Cubic Atmospheric Model - @g%?é |

(CCAM) CSIRO -
Global model with stretched grid (C288 .
grid) and maximum resolution over -
Australia (10km) .

Bias-corrected SSTs and sea ice
35 vertical levels in the atmosphere and 30
In the ocean, parameterization scale aware";

15 ensemble runs (5 ocean coupled)
Forced using the CMIP6 radiative forcings =~
for 4 SSPs, 64 simulations in total, o
+6718 years
« SSP1-2.6: Sustainability 60°s {" -
: Middle of the road s0's —— e T
« SSP3-7.0: Regional rivalry S —

* SSP5-8.5: Fossil-fuelled development (stress ~ °® ™° > ®% i ttbontem 0 7
testing)



Dynamically downscaling of CMIP6 models using CCAM

Resolution Ensemble CCAM setup
CMIP6 Model Model full name member

Australian Community Climate and Earth System 1.875 x 1.25° reilplfl atmospheric
Simulator, v. 1.5, CCAM atmospheric r20ilp1lfl atm-ocean
coupled
rd0ilplfl atm-ocean
coupled

ACCESS CM2 Australian Community Climate and Earth System 1.875 x 1.25° _ atm-ocean
Simulator, version 2 r2ilplfl coupled

CMCC-ESM2 Centro Euro-Mediterraneo sui Cambiamenti 0.9 x 1.25° 1ilo1fl atmospheric
Climatici rirlp

CNRM-CM6-1-HR Centre National de Recherches Météorologiques 0.5 x 0.5° rlilplf2 atmospheric
Coupled Global Climate Model, version 6.1, high- atm-ocean

resolution rlilplf2 coupled

EC-Earth3 Eggi;c))ia;\ Community Earth-System Model, 0.8 x 0.8° r1ilpifl atmospheric

atmospheric

. Flexible Global Ocean-Atmosphere-Land System
FElEER Model, grid point version 3

: : : atmospheric
GFDL-ESM4 Geophysical Fluid Dynamlcs Laboratory Earth 1x1° r1i1p1fl
System Model, version 4
m Goddard Institute for Space Studies Model E2.2G 2. x 2.5° r2ilplf2 atmospheric

tmospheri
MPI-ESM1-2-LR Max Planck Institute Earth System Model, 1.9x 1.9 roiipalml atmospheric

2.5 x 2.5 r4ilplfl



RESULTS - AUSTRALIA CMIP6 GCMS & CCAM VS OBSERVATION

CORRELATION AND RMSE

PRECIPITATION

+ Less spread in CMIP6-  *

Correlation

CCAM than in CMIP6 7 s
(due to bias correction .-
of SSTs) "
» Downscaling improves .| ==— -]
RMSE for all variables P e T
098:. ‘ﬂ 1 Lu .
* Correlation improved fo w{f - =, -
all variables L
Chapman et al., 2023 Earth’s
Future, v.11(11) e2023EF003548  °%| , ——===—
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RESULTS - AUSTRALIA WIDE

* For majority of metrics
and models, downscaling
Improves results

 KGE and Perkins for
seasonal and daily temp,
and seasonal precip
improves all models

* Seasonal cycle temp
|1mproves all models except

* Seasonal cycle precip
improves for all except 4

* Overall model score
improves for all models
except GFDL-ESM4

ACCESS-CM2_r2f1 A
ACCESS-ESM1-5_r20f1 4
ACCESS-ESM1-5_r40f1 1
ACCESS-ESM1-5_r6f1 -
CMCC-ESM2_r1f1 4
CNRM-CM&-1-HR_r1f2 -
CNRM-CM86-1-HR_r1f2_oc -
EC-Earth3_r1f1 -
FGOALS-g3_r5f1
GFDL-ESM4_r1f1 4
GISS-E2-1-G_r2f2 1
MPI-ESM1-2-LR_rof1 -
MRI-ESM2-0_r1f1 4

NorESM2-MM_r1f1 4

NerESM2-MM_r1f1_oc o
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Projected Change — Temperature Australia
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Projected Temperature Change - 2090 CMIP6 vs CCAM
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Projected Precipitation Change - 2090 CMIP6 vs CCAM
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Number heatwaves/season Avg duration Heatwave frequency Avg intensity
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Climate change impacts over Australia under high emissions by end of century

€ Monsoonal North € Wet Tropics © East Coast
+3.2°C -2% annually +2.7°C  -8% in summer +2.9°C  -6% annually

: 6 extra heatwaves per year lasting up
5 extra heatwaves per year lasting up
to 6 days longer

to 12 days longer
Less intense summer rainfall
Increasing aridity throughout the
year

5 extra heatwaves per year lasting up
to 4 days longer

Increasing aridity throughout the
year

summer

© Rangelands O Central Slopes

or +12% in summer
aale -13% in winter

4 extra heatwaves per year lasting up to 2
days longer

Strong seasonal contrasts, with less intense
winter rainfall, but increased intensity of
rare rainfall events in summer

Longer dry spells (up to 6 days) and
increasing aridity in winter

G ¢ © Murray Basin
+2.6°C -21% in winter +2.1°C -2% annually'vg +2.6°C +16% in summer

3 extra heatwaves per year, lasting 3 extra heatwaves per year, lasting 3 extra heatwaves per year, lasting
up to 1 day longer up to 0.4 days longer up to 1 day longer

i y Increased intensity of rare rainfall events in i i i i
lass ntansesummetrainiall ? % ﬂ" Increased intensity of rare rainfall events in
summer /' summer

+14% in summer
+3.4°C -15% in winter

S extra heatwaves per year lasting up
to 3 days longer

Increased intensity of rare rainfall events in
summer

Increasing aridity in winter

@ Southern and Southern-western flatlands @ Southern Slopes

Longer dry spells (up to 6 days) and
increasing aridity in winter

CLIMATE REGIONS CLIMATE CHANGE IMPACTS

B Equatorial B4 Tropical % sub-tropical Mean Temperature Extreme Heat r(_) Dry spells and
7l Temperate - Savannah BB Arid (> NRM regions Mean Precipitation Extreme Precipitation Aridity

Longer dry spells (up to 4 days) and

Longer dry spells and increasing aridity in winter _
increasing aridity in winter




The Queensland Future Climate Science Fyture climate portal
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CMIP6
dashboard

* 3 emissions scenarios
(new!)

« 15 ensemble runs (new!)

50+ metrics

« 200+ regions

* Point-based locations

(new!)

Queensland Future Climate Dashboard

| Mean Climate L E Temp

Indices Extreme Precipitation Indices

SPI-drought Indices

SPl-wetness Indices Fire Weather Indices

Queensland's climate is highly variable in space and time, ranging from tropical wet to arid in space and from extremely wet to extremely dry over time. Understanding how our future climate and

climate variability is subject to changes is crucial for adaptation and preparedness.

Region Map: @ Variable: @
Local Government Areas v | Mean Temperature
Scenario: @ Season: @ Year: @
SSP1-2.6 SSP2-4.5 | Annual » 2070
+

Guif of
Carpentana

Lpke
Eyre

Selachs
Crabon
Resive

EYRE LAKE BASIN

-
Mean
Temperature
(°C)
M50
BWss5-60
BWso-55
W 45-50
W 40-45
W 3s5-40
W s0-35
B 25-30
B 20-25
1 15-20

1.0-15

05-10

0.0-05
<0.0

Leaflet | Powered by Esri | USGS, NOAA

p
Local Government Areas
Qld

off | Range

il

" Mean

On | Models
Changes a

Long-term changes relative to reference period (1981-2010)
p

15 for Q

SSP3-7.0 — Mean Temperature for 2060-2079
4.1
38 —
g 34 ; R e
g _ = o . = =
= 3.0 . — - — — —_— —
Z - — — — == = ==
= = —_— ==
1.8
Annual Winter Spring Dry
Summer Autumn Wet
Season

.

Changes over time for Queensland
Long-term changes relative to reference period (1981-2010)
=

SSP3-7.0 - Mean Temperature for Annual season
5.1
43 —
g 36 — =
Y = =
2 28 -
-] —_ =
= e =
(2] 20 p—
=
13 = -
=
05 —
2030 2050 2070 2080
Period

AN




Data Publication - CORDEX-CMIP6 Regional Projections from the
Queensland Future Climate Science Program
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Up to5 billin people to be hit by rainfall
changes this century if CO: emissions are not
curbed, research shows

Published: January 17. 2024 1.38pm AEDT

original. ldrees Mohammad/EPA

& Emai Three to five billion people — or up to two-thirds of the world’s population - are Autaor

XX Tuiter) set to be affected by projected rainfall changes by the end of the century unless R

Kl Facebook s the world rapidly ramps up emissions reduction efforts, according to new. biasitppriens Trol3cky Clmab-Chanogw: Tha
& niversity of Queensiand

I Linkesdin research by myself and colleagues.
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Published: November 23, 2023 12.19pm AEDT

A storm coll over Brisbane in 2014, (AAP Image/Dan Peled)

& Era Australia’s climate, already marked by extremes with bushfires, heatwaves, storms

W Tuattor and coastal flooding, is only set to worsen with the growing effects of climate Ralph Trancoso

I Faoebook = change. ; et Change, The
in Linkedin

Disasters like the Black Summer bushfires of 2019-20 and the 2022 eastern
Australian floods are likely to become more frequent and intense.

& Prt Jozel Syktus

If carbon emissions continue at the current rate, climate change may make
Australia unbearable for future generations. It’s a confronting outlock, and we

Sarah Chapman
Wisiting Research Foliow, University of Leods

e w ]

need better tools to understand future impacts so we can adapt to them.



nature communications

Article | Open access | Published: 11 January 2024

3

Significantly wetter or drier future conditions for one

to two thirds of the world’s population

Ralph Trancoso E, Jozef Syktus, Richard P. Allan, Jacky Croke, Ove Hoegh-Guldberg & Robin Chadwick

Nature Communications 15, Article number: 483 (2024) I Cite this article

20k Accesses 5 Citations 273 Altmetric

https://www.nature.com/articles/s41467- 023- .

44513-3
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Up to 5 billion people to be hit by rainfall
changes this century if CO: emissions are not
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Significantly wetter or drier future conditions for
one to two thirds of the world’s population

Jozef Syktus — School of the Environment, The University of Queensland

Ralph Trancoso (paper lead author) - Department of Energy and Climate/UQ Adjunct A/Prof
Richard P. Allan — University of Reading

Jacky Croke — Queensland University of Technology
Ove Hoegh-Guldberg - The University of Queensland

Robin Chadwick - University of Exeter & UK Met Office
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Background

Global climate models project temperature to rise under increased
emissions with consensual agreement

Future (assessed)

N LW B

O
o

T Past (observed) |
o |Past (simulated) A

-1 . . .
1950 2000  [2000/ [2040/ [2080/ Change

2019] 2059] 2100] " 2100
(IPCC 2023)
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Background

Precipitation is complex to simulate due to various influencing factors,
including:

ediverse physics represented by GCMSs (knutti et al 2013),

*their sensitivity to radiative forcing, rate of warming (Meenhl et al 2023; Hausfather et
al 2022) and to aerosols radiative cooling (salzman 2016; Baek & Lora 2021),

*sea surface temperature variability (wangetal 2014) and patterns (Good et a 2021),
sinternal climate fluctuations operating at timescales varying from intra-
seasonal to multi-decadal - e.qg., the El NiNo (cai et al 2021), the IOD (kent et al 2015),

PDO (Lietal 2020), SAM (Gillet & Fyfe 2013) and NAM (Thompson & Wallace, 2001)
Future projections from GCMs do not align over time, amplifying the

heterogeneity of multiple projections (Mcsweeney & Jones 2013; Rowell 2012),

More ensembles over time along with computational power tends to expand
the spread of the climate change signal of precipitation and increase

uncertainty.
To reconcile the wide range of precipitation projections from multiple GCMs,

new approaches are needed (Trenberth & Dai 2003; Maher et al 2021).



Background

Temporal aggregations are inadequate for heterogeneous variables
like precipitation. Excessive temporal averaging (e.g., 20 years) does
not retain critical information and may obscure insights into the
direction of changes. Typically, ensemble average is presented to

express projected changes.
We present a novel approach that analyses trends in continuous, long-

term time-series from multiple GCM ensembles and quantifies the
agreement of wetter or drier conditions from all available model
simulations.

Objectives

 detect global warming-induced wetting and drying patterns,

* understand differences between CMIP5/6 GCM generations,

 determine seasonal dominance, and

* Identify “hotspots” of drier and wetter conditions with potential global
human impacts.



Data and approach

Data
*146 GCMs: 67 CMIP5 and 79 CMIP6 resampled to 1.5 °

*Intermediate (RCP4.5/ SSP2-4.5) and very high (RCP8.5/
SSP5-8.5) emissions scenarios

*Period 1981-2100 (120 years) — constrain natural variability
*Annual, DJF, MAM, JJA, SON

Long-term monotonic trends

*Non-parametric statistics — Rainfall time-series do not meet
parametric stats assumptions.

*Mann-Kendall (significance) and Theil-Sen slope estimator
(trend slope). Method account for autocorrelation.
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Approach

The assessment of continuous trends in time-series is a more comprehensive way to
understand how global warming affects precipitation totals because it samples the entire time-
series, aligns with the nature of radiative forcing, and does not employ temporal averaging.

« All pairs of points are factored in (T,-T,, T,-T, ... T -T,,) instead of T,, . — Tp.ccline-
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Approach

Multi-model agreement

*Percentage of GCMs with a robust long-term drying and wetting signal.

*Assesses the time-series of individual models and produces an integrated multi-model
agreement quantification.

It utilised 120-year time-series of annual and seasonal precipitation totals of the 146 GCMs,
interrogating the time-series of individual grid-cells as follows:

1)Whether statistically significant trends (p <0.05) have been detected;

2)The direction of trends (slope) to determine if it was undergoing wetting or drying;
3)Whether the cumulative trend over the 120-year period (slope) shifted by at least 10% the
local regime (or whether the 120-year change is at least 10% as large as the mean).

Country- and state-scale impacts

*Spatial masks of wetting and drying agreement (50 e 66% agreement thresholds)
*Affected population — current (Tatem 2017) and future (wang et al 2022) gridded data (1km)
*Regionalization by country and states globally

Seasonal dominance — which season has contributed the most to the annual trends



Findi NJQS Global hotspots of wetter and drier conditions

Hotspots of wetter and drier future conditions - consistent across
CMIP generations, seasons and scenarios and the agreement across

MO {a) Infermediate emissions - RCP4.5 S8P2-4.5 (67 GCMs) A

. — e

Drying and Wetting agreement across multiple CMIP5 and CMIP6 GCMs (%)
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Fi ndings Global hotspots of wetter and drier conditions across seasons

Intermediate emissions — RCP4.5/ SSP2-4.5 (67 GCMs)

Drying and Wetting agreement across multiple CMIP5 and CMIP6 GCMs (%)
- 7.
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Country and state-level impacts — Annual scale

Findings
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Findings

Drying and wetting
agreement masks

60°N

30°N-
Country-scale
impacted
population

30°8+
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Drying and Wetting agreement across multiple CMIP5 and CMIP6 GCMs (%)
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Findings Impacts on global population by country

Three billion people are projected to be impacted by changes in
precipitation under intermediate emissions. However, if emissions
are not curbed, five billion people or two thirds of world’s population

~_could be affected.

(a) Intermediate Emissions (RCP4.5 / SSP2-4.5) 67 GCMs (b) Very High Emissions (RCP8.5 / SSP5-8.5) 79 GCMs
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Seasonal dominance of drying and wetting patterns

Findings

Seasonal dominance of wetting

(b) RCP4.5/SSP2-4.5

i
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Findi NJS European region

Significant hotspot of drying over the southern Europe & wetting over Scandinavia.
Poland tendency towards wetter winter and drier summer

DJF - JJA -
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Drying and wetting agreement masks

2414 Dolnoslaskie

2415 Kujawsko-pomorskie
2416 Lubuskie

2417 Lédzkie

2418 Lubelskie

2419 Malopolskie

2420 Mazowieckie

2421 Opolskie

2422 Podlaskie

2423 Podkarpackie

2424 Pomorskie

2425 Swietokrzyskie

2426 Slaskie

2427 Warminsko-mazurskie
2428 Wielkopolskie

2429 Zachodniopomorskie
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Supplementary material - regionalization at sub-country level



Drying and wetting agreement masks
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Findin 0S Australian region

Parts of Australia with strong drying agreement, large parts with poor model agreement
Impacted by model bias in Indo-Pacific tropical ocean ENSO impacted region.

Very high emissions (79 GCMs)

Drying and Wetting agreement across multiple CMIP5 and CMIP6 GCMs (%)
B B
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Summary

This study estimates the extent of the global population to be affected by
significant long-term changes in precipitation due to human-caused global
warming.

The analysis provides an intermediate to high emissions envelope for how the
global population is projected to be impacted by future changes in long-term
precipitation totals based on the agreement of precipitation projections from
multiple climate models.

The approach detected agreement across multiple models in future wetting and
drying trends, revealing critical information on how precipitation is projected to
change under scenarios associated with continued GHG emissions.

By examining the time-series of individual models with flexible trend
detection methods, the approach provides a more robust quantification of
change, summarising critical multi-model information

Further innovation is the quantification of precipitation changes at country- and
state-scale and their potentially exposed populations. These findings can directly
assist with designing ‘fit for purpose’ climate adaptation policies and reduce
uncertainty in which direction precipitation is projected to change globally
under different emissions levels.



Limitations

 Resolution - CMIP6 GCMs 50-250 km
e Parameterized clouds, convection, aerosols

 Models have spread in mean climate (historical baseline eq.
1981-2010)

 Model bias in SSTs I.e tropical Pacific cold tongue bias,
Southern Ocean ...

* Need for downscaling/km scale, convection permitting
models, better physical processes especially related to
hydrological cycle



Daily rainfall (colour fill) & pressure (contour line)

LATITUDE

LATITUDE
8538358523888 58 8¢

24hr precipitation (mm) 24hr precipitation (mm)

Maximum daily rainfall amount more than twice greater in
high resolution model & rainfall events more localised



WHY DOWNSCALING? [

Wet Tropics
Elevation
LS Observations (90m) Global model (150km) Regional model (10km)
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