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Equations for incompressible flow in Boussinesq approximation
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A final remark about the only term that never appeared explicitly in the nondimen-
sional numbers presented: the pressure force. Pressure can be formally eliminated
from the equations. This 1s a consequence of the Boussinesq approximation. We
simply need to take the divergence of the momentum equation in (1.2) and note that
V - u; = 0 because of incompressibility. This yields the relation,

Vi =V - |—(u-Vju+vVu+bz — [z xu. (1.14)

Since there are no time derivatives in (1.14), pressure is a purely diagnostic field,
which 15 wholly slaved to w. It can be calculated from (1.14) and then substituted
for the pressure gradient force in the momentum equations. Its role 15 to maintain
mcompressibility under the action of all other forces. Therefore 1t would be redundant
to introduce nondimensional parameters involving pressure, becanse those parameters
could be expressed as combinations of the other parameters already discussed.



Averaged equations.

Let us repeat the averaging procedure for the full Boussinesq equations. We start
with the momentum equations,
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The extra term on the right hand side represent the effect of eddy motions on the
mean flow. If the average operator 1s a time average over some time T, then eddy
motions are those motions with time scales shorter than T'. If the average operator 1s
a spatial average over some scale L, then eddy motions are those motions with spatial
scales shorter than L. If the average operator 1s an ensemble mean, then the eddy
motions are those motions that change 1n every realizations, regardless of their scale,
1.e. they represent the unpredictable or turbulent part of the flow,

Using the continuity equation,
V-u=»0 = V-u=0 and V-u =0, (2.29)

we can rewrite the averaged momentum equation as,
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I 15 th umit matrix. These are the so-called Reynolds momentum equation and

the eddy flux pgu'u’ represent the Reynolds stress tensor due to fluctuations in
velocity filed. i e
Reynolds-stress tensor.



Rownanie na sredni wypor

We can similarly decompose the buovancy equation mto a mean and a fHuctuating
component, b = b+48, and write an equation for the mean component by substituting
back into the buoyancy equation,

— (0 V)b ==V [-xVb+ 0T (2.31)

The problem of tu
Revnolds stress and flax terms in terms of mean How quantities. However, 1t 1s not af

Reynolds eddy flux

Closure problem



Najprostsze domkniecie: K-teoria (ang. K-theory):

The simplest closure for the Reynolds stress terms is one which relates v’ to the

mean flow, by assuming a relation of the form,
un’ = —pVu, (2.32)

where pp 15 the eddy viscosity. With'such a closure the Reynolds stress term
takes the same form as the mean viscgsity term, but with a different viscosity. In
essence, this closures states that turlfulent eddies are similar to molecular motions
that constantly act to redistribute And homogenize momentum. Similarly, for the
tracer flux term we can define an @ddy diffusivity

wh = —kpVb. (2.33)

This eddy viscosity/diffusivity closure 19the most commonly used in ocean modeling
and interpretation of obseryations. At the crudest level wp and vp are assumed to
be constants; in more soplfisticated models they are functions of the large scale flow.
However, an eddy viscosy/difftisivity closure 1s rarely appropriate.

Scalar diffusivities are often denoted with k, hence «_is the eddy difusivity



Turbulent Kinetic Energy TKE

1. What 1s the energy source for the turbulence, 1.e. what aspects of the large-scale
Aow /buovancy field lead to generation of turbulence?

2. Where does the turbulent energy go? Does it feedback on the large-scale, or is 1t
"lost” to molecular processes?

3. Once generated, how 1s turbulent energy redistributed both spatially, and between
different components of the turbulent How?

To examine the turbulent energy budgets, we make a separation of fields into a large

scale component and a small-scale component:
small scale does not mean small values !!!

u=0U+u (3.1)

where

Judv =T [ wdv =0 (3.2)

where V7 1s the volume over which the spatial averaging takes place. The turbulent
fow 15 arbitrarily defined to be anyv flow below the averaging scale. Of course this
might include waves as well as turbulence, and here we will not be able to distinguish
between the two.



Kinetic Energy Budgets

1 5

KE = U (3.3)

KE of mean or large-scale flow = K E,0n = %ﬁﬁ (3.4)
KE of turbulent or fluctuating flow = K E,.p = 5 u' .o (3.5)

Kinetic enegy of large-scale motion. Component x.

We begin with the Boussinesq equations, to derive equations for the evolution of
K Epean. Consider the portion due to each velocity component separately. In the
x-direction, multiply the evolution equation for U7 by U
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(3.7)

The first three terms on the right hand side describe redistribution of mean KE within

the volume:
pressure work

uvﬂ{%}‘: transport by viscous stresses

V. (w'u'l7): transport by Reynolds stresses.
When integrated over a volume with no flux of KE 1 or out, these terms are zero.

The 4th and 5th terms represent net sources/sinks of mean KE:

loss of KE to dissipation;
W' VI transfer of mean KE to the fluctuating/turbulent part of the flow.

The? terms represent transfer of kinetic energy from the UU-component of
the flow e V- and W- components.




Kinetic enegy of large-scale motion. Components y and z.
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We can write down similar equations for the time-evolution of V° and W
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The V' equation contains terms analogous to the lig equation, while the w equation
lacks the coriolis term (since we have assumed Coriolis 1s aligned with the vertical),
but includes a buoyancy term, through which large scale potential energy 1s converted
to kinetic energy.



Energia kinetyczna przeptywu sredniego.

If we sum these three equations, to obtain the evolution equation for 1/2U.U, and
rewrite 1t in Einstein notation., we have
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where the first three terms on the right hand side are once again the transport terms:
pressure work, transport by viscous stresses and transport by Reynolds stresses. The
4th term 12 again thedissipation. and the 5th term represents the transfer of kinetic
energy between the mean flow and the turbulent fluctuating How. This term 1s known

as the Shear production term, since the shear in the mean flow (finite gradients in
U';) leads to production of turbulent kinetic energy. The final term on the right hand
=1cle 1= the large-scale buoyvancy production term.

Note that the terms P/pgdU; /dx;, which transfer kinetic energy between the different
components of the flow I7, V', W vanish from the equation for the total, due to the
divergence relation V.U = (). The Coriolis term similarly does not influence the total
kinetic energy, but only its transfer between [ and V' components.



Turbulent kinetic enegy. Component x.

To find the evolution equation for the x-component of the turbulent kinetic energy

(TKE) multiply du'/dt = dU/dt — OU /0t by u' and take the spatial average:

(3.11)

Comparing with the equation for i /2 we see that once again, there are three trans-
port terms: rt by viscous stresses and transport by Reynolds

stresses, and The@l;irrnductiun termdappears once
3.

again, but with the opposite sign to that i eqn - hence this term represents no
net loss of KE but a transfer between mean and turbulent components.




Turbulent kinetic enegy. Components y and z.

The analogons equations for v2 and w? are:




Turbulent kinetic enegy.

Adding the contributions due to the 3 velocity components and rewriting in Einstein
notation we have
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(3.15)
and (b) buoyant production

(3.16)
and lost through dissipation

(3.17)

The buoyant production term may be either positive (generation of kinetic energy,

loss of potential energv) or negative (loss of KE, increase in PE).



Simplifications.

Stationary turbulence — statistics do not depend on time (are statistically invariant under time
traslations t* —t+a), e.g.

a(u;(x,1))

=(
ot

(U,‘(X, t)> — fi(x)

Homogeneous turbulence — statistics do not depend on position where they are mesured,
(are statistically invariant under space translations x - —x +a, x, —x *a) e.g.

(U;‘(X, t)) — Q‘;(t) (Uf(x1: t)uf()(g: t)) — hff(x1 — X2, t)

Homogeneous, isotropic turbulence — statistics additionally do not depend on direction, i.e.
are invariant underrotations and reflections of the coordinate system

(ui(x, 1)) = gi(t), (ui(X1, t)uj(X2,t)) = hy(|X1 — X2|, 1),



Stationary turbulence

Now we see the mmportance of turbulence to the total energy of the system. The
viscous terms in the KE of the mean flow can be quite small, so that most KE
loss from the mean flow might be due to transfer to the turbulence wvia the shear
production term. Then once in the turbulent regime the KE may either be dissipated.,
or converted to potential energy via the buovancy term.

Note that the TKE equations are far from i1=sotropic. Shear production reflects any
1sotropy in the mean flow, while buoyant production appears only in the w™ equation.
The pressure interaction terms (and coriolis terms) transfer the TKE between different
velocity components,

If (a) the Turbulence 1s stationary (D/Dt(KE) = 0), and (b) we integrate over a
volume bounded by surfaces through which there are no energy fluxes, then there 1s
a balance between production and dissipation of TKE:

P+B=¢ (3.18)



Pure Shear flow

If the large-scale flow consists of a pure shear flow of the form (U, V, W) :ng, 0,0)

with no buovancy forcing, then the TKE shear production term becomes w'w'0U [z,
and 1t appears onlyv in the u? equation. Hence the large-scale flow directly generates
TKE only in the x-direction. v"# and w'# are then generated by transfer of TKE from

the x-direction via the pressure interaction terms.

>.
e R
> 72
. />

SR



Pure convective flow

If there 12 no large-scale flow, and turbulence 1s generated entirely through buoyvancy
forcing, P = 0. The source of TKE 12 w'l/, and TKE 15 directlv generated only in the
z-direction. Again, u2? and v are then generated by transfer of TKE via the pressure
iteraction terms.

BPL - produkcja lub ubytek wskutek sit wyporu
BPL = Wo)(£) z A




Flux Richardson number

Obviously an important parameter 1= the ratio between shear and buovancy produc-
tion of TIKE, known as the flux Richard=on number:
B w'l

Ry=== — 3.19
T7 P wwol oz (3.19)

If oU/dz = 0, then w'w’ < 0 if the flux of momentum is downgradient (positive eddy
viscosity). Hence we expect w'w'dU [z < 0. Ry < 0 therefore if w'l/ > 0 (convective
instability, buoyancy generating TKE), and Ry > 0 if w'b’ < 0 (stable stratification,
loss of TKE to PE).



3.3 Tracer variance equation

As for the kinetic energy components, we can derive a time evolution equation for T
(where T could be any conserved tracer) by multiplving the equation for T through

by T":

ot 2 2

Like the kinetic energy equation, the first two terms on the right hand side are
transport terms (transport by viscous stresses and transport by Revnolds stresses),

g —_\T"2 ,T? N %
LUV =k VT2 - TWNT — kNT'NT (3.27)

while tracer variance is produced by the term
Pr=-T"0NT (3.28)

and dissipated by the term

er = V1" NT' (3.29)
If there is a balance between production and dissipation of tracer variance (implying
stationarity and homogeneity) then

.PT = €7 [r?}?}[]]
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Fig. 2.4 Terms in the TKE equation (2.74b) as a function of height, normalized in the
case of the clear daytime ABL () through division by we?/h; actual terms are shown in
(b) for the clear night-time ABL. Profiles in (a) are based on observations and model
simulations as described in Stull (1988; Figure 5.4). and in () are from Lenschow ef af.
(1928) based on one aircraft flight. In both, B is the buoyancy term, D is dissipation, § is
shear gemeration and T is the transport term. Reprinted by permission of Kluwer
Academic Publishers.



SIEBERT ET AL.
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FIG. 1. The turbulence payload ACTOS with sonic, UFT-B, PVM-100A, and M-Fast-FS5P.
Also shown are the inlets for humidity and aerosol particle measurements.
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Fig. 2. Time series of LWC, vertical wind welocity W, horizontal wind wvelocity U, and
temperature T, as measured with ACTOS at a height of around 760 m AGL on 21 May 2003
during the BBC2 campaign.
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Fig. 4. Time series of LWC, vertical wind velocity W, horizontal wind velocity L7,
temperature T as measured with ACTOS at a height of around 1540 m AGL on 16 May 2004

during the INSPECTEO campaign.
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Probability that a random variable U is contained within V and V+dV:
P(V=UsV+dV)=f(V) dV

PDF of velocity at point x and at time t: f(V;x,t)

fG f(v; x, t)d

Calculating PDF from a set of data (box method):

Ensemble average:

A N

N. - subset of data with U contained
— in a given range VsUsV
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Fio. 8. (top) Time series of local energy dissipation rate £, and (bottom) LWC of BBC2
data. The integration time 7 for £_is 1 s: a running average over 10 points is included.
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Fig. 11. PDF of natural logarithm of local energy dissipation rates . A Gauss fit is
included for reference.






POST - Physics of Stratocumulus Top, California, 2008
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