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Zasada zaliczenia:

- kazdy student przygotowuje i wygtasza w semestrze po 2 seminaria
na uzgodniony temat dotyczacy optyki wspotczesnej

- jedno z seminariéw nalezy wygtosi¢ w jez. angielskim

- ha kazde seminarium przeznaczonych bedzie 45min oraz 10min na
dyskusje po jego zakonczeniu

- tematem przewodnim proseminarium w tym roku bedzie teoria
oszczednego probkowania (ang. Compressive Sensing/Sampling)



Propozycje tematow

Oszczedne probkowanie (CS - Compressive sensing/sampling)
Szybka detekcja jednopunktowa

Wykorzystanie CS do “widzenia zza rogu”

Wykorzystanie CS do obrazowania przez osrodki rozpraszajace
Wykorzystanie CS w holografii

Matematyczne podstawy oszczednego probkowania

Obrazowanie posrednie, kamery jednopunktowe (comptational ghost imaging, single-pixel
dectectors)

Wykorzystanie CS do pomiaru odlegtosci, radar laserowy (ladar)

Wykorzystanie CS do rekonstrukcji obrazu na podstawie zbioru skanéw — zastosowanie w
mikroskopii skaningowej i rezonansie magnetycznym (MRI)

Wykorszystanie CS do uzyskania obrazowania nadrozdzielczego

Wiasciwosci | wykorzystanie transformat liniowych: a) Hadamarda, Fouriera, DCT, b) falkowe,
szumkowe (ang. noislets)

Podstawy programowania liniowego — wykorazystanie do rekonstrukcji pomiaru

Przeglad narzedzi numerycznych do obliczen CS (do rekonstrukcji sygnatu)



Propozycje tematow

Inne tematy
Wiasne propozycje, np. temat pracy licencjackiej / magisterskiej

Opis wybrane] metody modelowania elektromagnetycznego wraz z jej
(najlepiej wolnodostepna) implementacjg

Cloaking
Slow light
Siatki podfalowe — metalowe, lub o wysokim kontrascie

Absorbery elektromagnetyczne



Motywacja:

The goal of image compression is to represent the digital model of an
object as compactly as possible. One can regard the the possibility of
digital compression as a failure of sensor design. If it is possible to
compress measured data, one might argue that too many
measurements were taken.

David Brady

Oszczedne probkowanie:

Jesli nie zalezy nam na redundancji w pomiarze i jesli mierzony sygnat
jest kompresowalny (istnieje dla sygnatu reprezentacja rzadka), mozna
mysleC o uproszczeniu uktadu pomiarowego i zmniejszeniu liczby
mierzonych danych.

W optyce, takie postepowanie pozwala czesto bardzo uproscic¢ uktad
detektora/kamery. Sygnat wymaga nastepnie rekonstrukcji cyfrowej.



Computational ghost imaging

(Pomiar posredni, koincydencyjny)
J. H. Shapiro, Computational ghost imaging, Phys. Rev. A 78, 061802(R),2008
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Computational ghost imaging

Y. Bromberg et al, Ghost imaging with a single detector, Phys. Rev A 79, 053840, 2009

We experimentally demonstrate pseudothermal ghost imaging and ghost diffraction using only a single detector. We achieve this by
replacing the high-resolution detector of the reference beam with a computation of the propagating field, following a recent proposal
by Shapiro Phys. Rev. A 78, 061802R 2008 Since only a single detector is used, this provides experimental evidence that
pseudothermal ghost imaging does not rely on nonlocal quantum correlations. In addition, we show the depth-resolving
capability of this ghost imaging technique.
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bucket detector FIG. 2. (Color online) Computational ghost image reconstruc-

tion of a 2X2 cm? transmission mask placed at L=84 cm. (a)

FIG. 1. (Color online) Experimental setups for ghost imaging. Reconstructed image at the object plane, obtained with 16 000 re-
(a) The standard pseudothermal two-detector setup, where a ghost alizations. The inset shows the transmission mask. (b) A calculated
image of the object is obtained by correlating the pseudothermal intensity pattern of a single phase realization. The resolution of the
field measured by a CCD with the intensity measured by a bucket reconstruction in (a) is dictated by the speckle size. (c) Recon-
detector. (b) The computational single-detector setup used in this structed out-of-focus image, at a different z plane (L=15 cm), dem-
work. A pseudothermal light beam is generated by applying control- onstrating the depth-resolving capabilities of the computational

method. (d) Measured signal-to-noise ratio (SNR) of the recon-
structed image as a function of the number of realizations (blue
dots). The theoretical line depicts VN dependence.

lable phase masks ¢/ (x,y) with a spatial light modulator (SLM).
The object image is obtained by correlating the intensity measured
by the bucket detector with the calculated field at the object plane.



ldea detekcji punktowe] obrazu (single-pixel detectors)

A New Compressive Imaging Camera
Architecture using Optical-Domain
Compression, D. Takhar et al., Proc.
IS&T/SPIE Computational Imaging 1V, 2006
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Figure 2. Compressive Imaging (CI) camera hardware setup.
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Figure 1. Compressive Imaging (CI) camera block diagram. Incident lightfield (corresponding to the desired image x) is reflected off a
digital micro-mirror device (DMD) array whose mirror orientations are modulated in the pseudorandom pattern supplied by the random
number generators (RNG). Each different mirror pattern produces a voltage at the single photodiode (PD) that corresponds to one
measurement y(m). From M measurements y we can reconstruct a sparse approximation to the desired image x using CS techniques.



ldea detekcji punktowe] obrazu (single-pixel detectors)

e Single detector: By time multiplexing a single detector, we can use a less expensive and yet more sensitive photon
detector. This 1s particularly important when the detector is expensive, making an N-pixel array prohibitive. A single
detector camera can also be adapted to image at wavelengths that are currently impossible with conventional CCD
and CMOS imagers.

e Universality: Random and pseudorandom measurement bases are universal in the sense that they can be paired
with any sparse basis. This allows exactly the same encoding strategy to be applied in a variety of different sensing
environments; knowledge of the nuances of the environment are needed only at the decoder. Random measurements
are also future-proof: if future research in image processing yields a better sparsity-inducing basis, then the same set
of random measurements can be used to reconstruct an even better quality image.

e Encryption: A pseudorandom basis can be generated using a simple algorithm according to a random seed. Such
encoding effectively implements a form of encryption: the randomized measurements will themselves resemble
noise and be meaningless to an observer who does not know the associated seed.

¢ Robustness and progressivity: Random coding is robust in that the randomized measurements have equal prior-
ity, unlike the Fourier or wavelet coefficients in current transform coders. Thus they allow a progressively better
reconstruction of the data as more measurements are obtained: one or more measurements can also be lost without
corrupting the entire reconstruction.

e Scalability: We can adaptively select how many measurements to compute in order to trade off the amount of
compression of the acquired image versus acquisition time; in contrast, conventional cameras trade off resolution
versus the number of pixel sensors.

e Computational asymmetry: Finally, CI places most of its computational complexity in the decoder, which will
often have more substantial computational resources than the encoder/imager. The encoder is very simple; it merely
computes incoherent projections and makes no decisions.
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Emerging Technology From the arXiv

June 3, 2013

Bell Labs Invents Lensless
Camera

al+le|-lola

A new class of imaging device with no lens and just a
single light sensitive sensor could revolutionise optical,
infrared and millimetre wave imaging

http://www.technologyreview.com/view/515651/bell-labs-invents-lensless-camera/

Przyktad: kolorowa kamera o “nieograniczonej”’ gtebi
ostrosci, bez obiektywu i bez macierzy detektorow
(wykorzystany jest pojedynczy detektor, modulator
przestrzenny i filtry dla barw podstawowych; mozna
tatwo zmienic zakres widmowy np. do zakresu THz)


http://www.technologyreview.com/view/515651/bell-labs-invents-lensless-camera/
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Connectivity
New Camera Can See Around
Corners

Single pixel detector

Computer
Chinese scientists have built a camera capable of Scattering media

photographing objects it can't directly see.

by Emerging Technology from the arXiv  January 6, 2017

0 O00O0O00Q

Inthe last few years, single-pixel cameras have begun to revolutionize the
field of imaging. These counterintuitive devices produce
high-resolution images using a single pixel to detect light. They do not
need lenses, the images of have none of the distortions that lenses
produce, and the entire picture is always in focus. Physicists have used

them to make movies and even to create 3-D images.

And that raises an interesting question: how much more can these

devices do?

Today we get an answer of sorts thanks to the work of Bin Bai and co at

Xi'an Jiaotong University in China, who have built a single pixel camera Single pixel detector
that can see around corners. Their new device can photograph objects

even when they are not in direct view. Optik147(2017)136-142



Konstrukcja kamery na podczerwien

R. M. Willett et al, Compressed sensing for practical optical imaging systems: a tutorial,
Opt. Eng. 50, 072601, 2011
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Fig. 3 Infrared camera examples. (a) Two possible IR camera architectures. In the first, a coded aperture is placed in the lens Fourier plane,
while in the second, two different phase masks are used to create the measurement matrix. (b) Panoramic midwave camera assembly.



3D Computational Imaging with
Single-Pixel Detectors

B. S5un,* M. P. Edgar,! R. Bowman,? L. E. Vittert,> 5. Welsh,® A. Bowman,? M. ]. Padgett®

Computational imaging enables retrieval of the spatial information of an object with the use of
single-pixel detectors. By projecting a series of known random patterns and measuring the
backscattered intensity, it is possible to reconstruct a two-dimensional (2D) image. We

used several single-pixel detectors in different locations to capture the 3D form of an object.
From each detector we derived a 2D image that appeared to be illuminated from a different
direction, even though only a single digital projector was used for illumination. From the
shading of the images, the surface gradients could be derived and the 3D object reconstructed.
We compare our result to that obtained from a stereophotogrammetric system using multiple
cameras. Our simplified approach to 3D imaging can readily be extended to nonvisible wavebands.
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light projectar _

binary speckle
L__._y— chject patterns
Fig. 1. Experimental setup used for 3D surface reconstructions. The light projector illuminates the
object (head) with computer-generated random binary speckle patterns. The light reflected from the
object is collected on four spatially separated single-pixel photodetectors. The signals from the photo-
detectors are measured and used to reconstruct a computational image for each photodetector.

58t0¢

Fig. 3. 3D reconstruction of the object. Rendered views of the reconstructed facial surface derived by integration of the surface normal data and overlaid
with the reflectivity data (see movie 51).

computer

Przyktad: obrazowanie 3D z 4
detektorami punktowymi

Science 340, 844 (2013);
DOI: 10.1126/science.1234454
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Fig. 2. Source images from the four single-pixel detectors from 1000 to 1 million iterations.
The images from each photodetector are reconstructed using an iterative algorithm (described in the text).
The spatial information in each image is identical; however, the apparent illumination source is deter-
mined by the location of the relevant photodetector, indicated undemneath. No postprocessing has been
applied to the images. The scale refers to the relative intensity of the images (in arbitrary units, 0 to 255).
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Welsh et al, “Fast full-color computational imaging with single-pixel detectors”
Opt. Express 21, 2013, DOI:10.1364/0OE.21.023068



Texas Instruments DLP 4500

http:/Awww.ti.com/lit/ug/dipu011d/dIg Light Engine
f
‘ DLP4500FQE | Optics

Flex Cable

Structured light applications:

— 3D modeling and design

— Fingerprint identification

— Face recognition

— Machine vision and inspection
Medical and life sciences:

— Vascular imaging

— Dental impression scanners
— Intraoral dental scanners

— Orthopedics, prosthesis, CT, MRI, and X-ray marking

— Retail cosmetics

Small display projectors:

— Embedded display

— Interactive display

— Information overlay

Tl NIRscan EVM

— TI NIRscan EVM has many similarites with the LightCrafter 4500 module

— NIRscan uses the DLP4500 DMD in structured light mode to provide a cheap, efficient
spectroscopy solution

— For more information visit NIRscan page on the Tl website
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Figure 1-3. 0.45-Inch DMD Diamond Pixel Geometry
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Zhao et al, Ghost imaging lidar via
sparsity constraints, Appl. Phys. Lett.
101,141123 (2012); doi: 10.1063/1.4757874
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FIG. 1. Experimental setup of GISC lidar.
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FIG. 2. Experimental reconstruction results for high-reflection targets we pro-
posed at 900 m range (with M = 3000 measurements). (a) and (b) The original
target plates imaged by a camera and a telescope, respectively; (c) the con-
crete sizes of a standard Chinese vehicle license plate; (f) the concrete sizes of
a set of resolution panels; (d) and (g) are the targets’ images reconstructed by
GISC lidar and the targets are all represented in the space basis; (e) the imag-
ing result obtained by replacing the PMT with a camera in Fig. 1 and accumu-
lating 3000 measurements (the receiving aperture of telescope is 420 mm); (h)
the cross-section of the rectangular selection box in (g).
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FIG. 1. Experimental setup of 3D GI ladar system with pseudo-thermal light.

Three-dimensional ghost imaging
ladar, Gong et al. 2013

http://arxiv.org/pdf/1301.5767v1.pdf
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http://arxiv.org/pdf/1301.5767v1.pdf

Nadrozdzielczos¢ + pomiar informacji fazowej

Super-resolution and reconstruction of sparse sub-wavelength images,

Gazit et al., Opt. Express 2009
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Fig. 3. Experimental setup for the proof-of-concept experiments. The laser beam is col-
limated using lenses L1 and L2, before the sample is 1lluminated. The signal is then Fourier
transformed using lens L3, low-pass filtered by the slit and again Fourier transformed into
the real plane by lens L4. Another lens L5 performs an additional Fourier transform, which
1s recorded by a camera. In order to measure the phase distribution, a probe beam is super-
imposed (using the beam splitter BS) on the signal in order to create interference fringes.
In an alternative setup, the information can be directly taken in the real plane, so that the
camera 1s positioned directly behind lens L4. .
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Fig. 5. Experimental proof-of-concept: reconstruction of amplitude + phase informa-
tion. An important feature of our proposed algorithm is the ability to recover both ampli-
tude and phase, which 1s essential for pictorial information carried upon electromagnetic
waves. (a,b.c) The original information consisting of three vertical stripes (a), its Fourier
spectrum (b), and a horizontal cross-section of the amplitude, taken through the real-space
information, revealing that the two stripes on the right are m-phase shifted with respect
to the stripe on the left (c). (d.e.f) Using the optical slit, the signal is low-pass filtered at
the vertical red lines, yielding a highly blurred image consisting of two distinct lobes (d).
The Fourier spectrum now contains now only the lowest frequencies (e), which cause the
mergence of the two stripes on the right, as seen in the horizontal cross section (f). (g,h.k)
Reconstruction using CS methods yields a high quality recovered information (g) and its
respective Fourier spectrum (h). The strong correspondence between original and recovery
1s clearly visible in the horizontal cross section (k).



Mikroskopia fluorescencyjna

Compressive fluorescence microscopy for
biological and hyperspectral imaging,

V. Studera, PNAS 2012,
doi:10.1073/pnas.1119511109

The mathematical theory of compressed sensing (CS) asserts that
one can acquire signals from measurements whose rate is much
lower than the total bandwidth. Whereas the C5 theory is now
well developed, challenges concerning hardware implementations
of C5-based acquisition devices—especially in optics—have only
started being addressed. This paper presents an implementation
of compressive sensing in fluorescence microscopy and its applica-
tions to biomedical imaging. Our C5 microscope combines a
dynamic structured wide-field illumination and a fast and sensitive
single-point fluorescence detection to enable reconstructions of
images of fluorescent beads, cells, and tissues with undersampling
ratios (between the number of pixels and number of measure-
ments) up to 32. We further demonstrate a hyperspectral mode
and record images with 128 spectral channels and undersampling
ratios up to 64, illustrating the potential benefits of C5 acquisition
for higher-dimensional signals, which typically exhibits extreme
redundancy. Altogether, our results emphasize the interest of CS
schemes for acquisition at a significantly reduced rate and point to
some remaining challenges for CS fluorescence microscopy.

Compressive Fluorescence Microscopy: Implementation

Experimental Setup. Our setup is based on a standard epifluores-
cence inverted microscope (Nikon Ti-E) as shown in Fig. 14. To
generate spatially modulated excitation patterns, we incorpo-
rated a Digital Micromirror Device (DMD) in a conjugate image
plane of the excitation path. The DMD is a 1,024-by-768 array of
micromirrors (Texas-Instrument Discovery 4100) of size 13.68 x
13.68 pm each, and which can be shifted between two positions
oriented at 4+12° or —12° with respect to the DMD surface. The
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Fig. 1. {A) Experimental setup. The dotted and plain segments correspond to
planes respectively conjugated to the pupil and sample planes. (B) Slice of lily
anther (endogenous fluorescence with epifluorescence microscopy image re-
corded on a CCD camera). (C) Projection of a Hadamard pattern on a uniform
fluorescent sample. (D) Projection of the same Hadamard pattern on the bio-
logical sample. (E) Fluorescence intensity during an acquisition sequence.



Lensfree Fluorescent On-Chip Imaging Using Compressive Sampling
A. F. Coskun et al. Opt. Photon News, Dec 2010
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Terahertz imaging with compressed sensing
Chan et al, Opt. Lett,33,974, 2008

We describe a novel, high-speed pulsed terahertz (THz) Fourier imaging system based on compressed sens-
ing (CS), a new signal processing theory, which allows image reconstruction with fewer samples than tra-
ditionally required. Using CS, we successfully reconstruct a 6464 image of an object with pixel size
1.4 mm using a randomly chosen subset of the 4096 pixels, which defines the image in the Fourier plane,
and observe improved reconstruction quality when we apply phase correction. For our chosen image, only
about 12% of the pixels are required for reassembling the image. In combination with phase retrieval, our
system has the capability to reconstruct images with only a small subset of Fourier amplitude measure-
ments and thus has potential application in THz imaging with ew sources. © 2008 Optical Society of America
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Fig. 1. THz Fourier imaging setup. An approximately col-
limated beam from the THz transmitter illuminates an ob-
ject mask, placed one focal length away from the focusing
lens. The THz receiver raster scans and samples the Fou-
rier transform of the object on the focal plane.

Fig. 3. Image reconstruction results using (a) CPR with
the full dataset (4096 magnitude measurements) and (b)
CSPR with a subset of 1500 measurements from the
dataset used in (a).



Zastosowania w sejsmolodgil

A A compressive sensing framework for seismic source parameter estimation, I. Rodriguez et al.,

A ‘ A7 Geophys. J. Int. (2012), doi: 10.1111/j.1365-246X.2012.05659.x
<—__ Recording

stations \
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volume A

Figure 1. Diagram of the seismic event monitoring setting. The monitored
volume (grid) encloses a region with potential seismic activity.
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Figure 8. Distribution of recording stations considered in the inversion
tests for the 2002 June 18 Caborn earthquake (black triangles). The black
square represents the surface projection of the monitoring grid. The dotted
line delimits the WVSZ, and the dashed line the WVFS. The beach ball
representation corresponds to the solution determined by Kim (2003) joined
by a line to its epicentral location. Image after Vera Rodriguez et al. (2012).

Table 1. Comparison of different solutions for the June 18, Caborn earthquake. NNA stands for the number of non-adaptive
measurements per non-zero coefficient in the CS solution. DS stands for dictionary size after compression, where 100 per cent
corresponds to the uncompressed dictionary. Success rate refers to the percentage of times that the event was detected using the
CS approach in 500 realizations of sensing matrix.

Success rate  Origin time 17 hr 37 min +

Solution (per cent) () Location Source mechanism
Kim (2003) N/A 17.2 37.99° N '
87177 W -
Depth (18 + 2) km .
Vera Rodriguez et al. (2012) N/A 16.0 37.988° N '
87.770° W
Depth 20.5 km
NNA=5 4.6 16,0+ 0.2 (37.988 £+ 0.000)° N
DS = 0.7 per cent (87.770 & 0.000)° W
Depth (18.98 + 2.35) km
NNA =20 314 16.0+0.0 (37.988 £+ 0.000)° N
DS = 2.8 per cent (87.770 £ 0.000)° W
Depth (20.21 + 1.17) km
(O8]
NNA =40 60.0 16.0+0.0 (37.988 £+ 0.000)° N
DS = 5.6 per cent (87.770 £ 0.000)° W
Depth (20.47 + 0.41) km
NNA =120 96.8 16.0 £ 0.0 (37.988 4+ 0.000)° N
DS = 16.7 per cent (87.770 & 0.000)° W

Depth (20.50 = 0.00) km




ldea dziatania CS - pomiar

Kompresowalnos¢é sygnatu x: THE CENTRAL CONCEPT
The signal x is K-sparse if it is a linear IS STRAIGHTFORWARD: WE
combination of only A basis vectors; that TRANSFORM THE IMAGE INTO AN
is, only K of the s; coefficients in (1) are APPROPRIATE BASIS AND THEN
nonzero and (N — K) are zero. The case CODE ONLY THE IMPORTANT

of interest is when K <« N. The signal x N EXPANSION COEFFICIENTS.
is compressible if the representation (1) X = Z Si Ui or x=1vs (1

has just a few large coefficients and many

small coefficients. y=®&x = ®Ws = Os si= &%) =y)x

Oszczedny pomiar syghatu kompresowalnego:

y 0]
e ]
Rl L

Pomiary  Macierz pomiaru ¢

Mierzony kompresowalny
(a) sygnatx (b)

[FIG1] (a) Compressive sensing measurement process with a random Gaussian
measurement matrix ® and discrete cosine transform (DCT) matrix V. The vector of
coefficients s is sparse with K = 4. (b) Measurement process with ® = ®W. There are
four columns that correspond to nonzero s; coefficients; the measurement vectory is a

linear combination of these columns.
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ldea dziatania CS - niekoherencja

Jak powinna wyglada¢ macierz

pomiaru @ , zeby z pomiaru y

mozna byto odtworzy¢ sygnat x ?

}?:@K: dWs = s

(macierz @ nie jest kwadratowa i w ogolnosci
problem odwrotny nie ma jednoznacznego

rozwigzania).

The measurement matrix ® must allow
the reconstruction of the length-N signal
X from M < N measurements (the vector
y). Since M < N, this problem appears
ill-conditioned. If, however, x 1s K-sparse
and the K locations of the nonzero coef-
ficients in s are known, then the problem
can be solved provided M = K. A neces-
sary and sufficient condition for this sim-
plified problem to be well conditioned is
that, for any vector v sharing the same K
nonzero entries as s and for some € > ()

1©®vll2

l—€e <
Ivll2

<1l+e. (3)

CS THEORY ASSERTS THAT ONE CAN
RECOVER CERTAIN SIGNALS AND
IMAGES FROM FAR FEWER SAMPLES
OR MEASUREMENTS THAN
TRADITIONAL METHODS USE.

That is, the matrix ® must preserve the
lengths of these particular K-sparse vec-
tors. Of course, in general the locations
of the K nonzero entries in s are not
known. However, a sufficient condition
for a stable solution for both K-sparse
and compressible signals is that ® satis-
fies (3) for an arbitrary 3K-sparse vector
v. This condition is referred to as the
restricted isometry property (RIP) [1]. A
related condition, referred to as incoher-
ence, requires that the rows {¢;} of ©
cannot sparsely represent the columns
{vr;} of ¥ (and vice versa).

R. G. Baraniuk, IEEE SIGNAL PROCESSING MAGAZINE, 118, JULY 2007
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Przyktad macierzy pomiaru ®:
- mozna wybrac zbior realizaciji
szumu biatego o zerowej Sredniegj i

wariancji 1/N

m The matrix @ is incoherent with
the basis ¥ = I of delta spikes with
high probability. More specifically, an
Mx N 1id Gaussian matrix
® = &l = & can be shown to have
the RIP with high probability if
M = cK log(N/K), with ¢ a small
constant [1], [2], [4]. Therefore, K-
sparse and compressible signals of
length N can be recovered from
only M = cK log(N/K) < N random
Gaussian measurements.

m The matrix & is universal in the
sense that ® = ¥ will be iid
Gaussian and thus have the RIP with
high probability regardless of the
choice of orthonormal basis W.

WHAT IS MOST REMARKABLE
ABOUT THESE SAMPLING
PROTOCOLS IS THAT THEY ALLOW
A SENSOR TO VERY EFFICIENTLY
CAPTURE THE INFORMATION IN A
SPARSE SIGNAL WITHOUT TRYING
TO COMPREHEND THAT SIGNAL.

R. G. Baraniuk, IEEE SIGNAL PROCESSING MAGAZINE, 118, JULY 2007
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Define the £, norm of the vector s as
(Isllp)? = Zil |s;|”. The classical
approach to inverse problems of this
type is to find the vector in the trans-
lated null space with the smallest £

® Minimum £1 norm reconstruction:
Surprisingly, optimization based on
the £1 norm

s = argmin ||s'||1 such that ®s' =y

can exactly recover K-sparse signals and
closely approximate compressible signals
with high probability using only
M = cK log(N/K) iid Gaussian meas-
urements [1], [2]. This is a convex opti-
mization problem that conveniently
reduces to a linear program known as
basis pursuit [1], [2] whose computation-
al complexity is about O(N3}. Other,

Rekonstrukcja poprzez rozwigzanie problemu
optymalizacji w sensie normy (1 preferuje wektory

rzadkie. Jesli doktadne rozwigzanie jest rzadkie,
moze zostac znalezione, pomimo iz problem
odwrotny nie byt dobrze zdefiniowany.

(a) (b) (c)

[FIG2] (a) The subspaces containing two sparse vectors in R’ lie close to the
coordinate axes. (b) Visualization of the £; minimization (5) that finds the non-
sparse point-of-contact s between the ¢; ball (hypersphere, in red) and the
translated measurement matrix null space (in green). (c) Visualization of the ¢,
minimization solution that finds the sparse point-of-contact’s with high probability
thanks to the pointiness of the ¢, ball.
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http://users.ece.gatech.edu/~justin/l1magic/

{1-MAGIC

code f papers f links

One of the central tenets of signal processing is the
Shannon/MNyguist sampling theory: the number of samples
needed to capture a signal is dictated by its bandwidth. Very
i'ecentlv, an alternative theory of "compressive sampling"has
emerged. By using nonlinear recovery algorithms (based on
conwvex optimization), super-resolved signals and images
can be reconstructed from what appears to be highly
incomplete data. Compressive sampling shows us how data
compression can be implicithy incorporated into the data
acquisition process, a gives us a new vantage point for a
diverse set of applications including accelerated tomographic
imaging, analog-to-digital conwversion, and digital
photography.

See examples of compressive sampling in action.

Code

L1-MAGIC is a collection of MATLABE routines for solving the
convex optimization programs central to compressive
sampling. The algorithms are based on standard interior-point methods, and are suitable for
large-scale problems.

1load the code (including User's Guide)

1load the User's Guide (pdf)


http://users.ece.gatech.edu/~justin/l1magic/

L1-magic toolbox
Przyktad rozwigzywanego zagadnienia optymalizaciji:

e Min-f; with equality constraints. The program
(P;) min [[z|[; subject to Az =02,

also known as basis pursuit, finds the vector with smallest {1 norm
lzll1 == ) |l
i

that explains the observations b. As the results in [4, 6] show, if a sufficiently sparse zg
exists such that Azg = b, then (P;) will find it. When z, A, b have real-valued entries, (P;)
can be recast as an LP (this is discussed in detail in [10]).

Tej postaci jest zagadnienie rekonstrukcji sygnatu s:

y=®x = dPW¥s = Os



Prace poswiecone CS z roznych dziedzin

Multi-Sensor and Distributed Compressive Sensing
Model-based Compressive Sensing
http://dsp.rice.edu/cs 1-Bit Compressive Sensing
Compressive Sensing Recovery Algorithms
- Talks Coding and Information Th
- Software oding and Information Theory

- Tutorials and Reviews High-Dimensional Geometry
Ell-1 Norm Minimization

Kilka tysigcy (?) artykutow Statistical Signal Processing

Machine Learning

Bayesian Methods

Finite Rate of Innovation

Adaptive Sampling Methods for Sparse Recovery
Data Stream Algorithms

Random Sampling

Histogram Maintenance

Dimension Reduction and Embeddings

Applications:
Compressive Imaging
Medical Imaging
Analog-to-Information Conversion
Computational Biology
Geophysical Data Analysis
Hyperspectral Imaging
Compressive Radar
Astronomy
Communications

Surface Metrology
Acoustics, Audio, and Speech Processing
Remote Sensing
Computer Engineering
Computer Graphics
Robotics & Control
Content Based Retrieval
Neuroscience

Optics and Holography
Physics

Fault Identification


http://dsp.rice.edu/cs
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