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 THE PERTURBATION METHOD

In the perturbation method, all field variables are divided into two parts, a basic state portion, 
which is usually assumed to be independent of time and position and a perturbation portion, 
which is the local deviation of the field from the basic state, e.g 

and

The basic assumptions of perturbation theory are that the basic state variables must 
themselves satisfy the governing equations when the perturbations are set to zero, and the 
perturbation fields must be small enough so that all terms in the governing equations that 
involve products of the perturbations can be neglected:

If terms that are products of the perturbation variables are neglected, the nonlinear 
governing equations are reduced to linear differential equations in the perturbation variables 
in which the basic state variables are specified coefficients. These equations can then be 
solved by standard methods to determine the character and structure of the perturbations in 
terms of the known basic state. 
For equations with constant coefficients the solutions are sinusoidal or exponential. 
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Dispersion and Group Velocity

For propagating waves, ν generally depends on the wave number of the perturbation as well 
as the physical properties of the medium. Thus, because c = ν/k, the phase speed also 
depends on the wave number (dispersive waves) except in the special case where ν~k (non-
dispersive waves). 
The formula that relates ν and k is called a dispersion relationship. 

Nondispersive waves (e.g. acoustic), have phase speeds that are independent of the wave 
number. A spatially localized disturbance consisting of a number of Fourier wave 
components (a wave group) will preserve its shape as it propagates in space at the phase 
speed of the wave.
For dispersive waves, however, the shape of a wave group will not remain constant as the 
group propagates. The individual Fourier components of a wave group may either reinforce 
or cancel each other. Furthermore, the group generally broadens in the course of time, that 
is, the energy is dispersed.
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When waves are dispersive, the speed of the wave group is generally different from the 
average phase speed of the individual Fourier components. Hence, as shown below, 
individual wave components may move either more rapidly or more slowly than the wave 
group as the group propagates along. 
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Group velocity (propagation velocity of an observable disturbance and hence the energy) 

Consider the superposition of two horizontally propagating waves of equal amplitude but 
slightly different wavelengths with wave numbers and frequencies differing by 2δk and 2δν. 
The total disturbance is thus:

In the above for brevity the Re[ ] is omitted, and it is understood that only the real part of the 
right-hand side has physical meaning. 
Rearranging terms and applying the Euler formula gives:

i.e. disturbance  is the product of a high-frequency carrier of wavelength 2π/k of phase speed, 
ν/k being the average of the two Fourier components, and a low-frequency envelope of 
wavelength 2π/δk that travels at the speed δν/δk. Thus, in the limit as  δk→0, the horizontal 
velocity of the envelope, or group velocity, is just:
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 Acoustic or Sound Waves

Sound waves, or acoustic waves, are longitudinal waves. To introduce the perturbation method 
we consider the problem illustrated above.
We assume that u = u(x,t). 
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The momentum equation, continuity equation, and thermodynamic energy equation for adiabatic 
motion are, respectively:

Using    we may combine last equations:

Adopting perturbation theory and substituting to the first and last equations 



8

After substitution one obtains:

We next observe that provided     we can use the binomial expansion to 
approximate the density term as:

Neglecting products of the perturbation quantities and noting that the basic state fields are 
constants, we obtain the linear perturbation equations:

minus
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we get the standard wave equation:

A simple solution representing a plane sinusoidal wave propagating in x is 

where for brevity we omit the Re{ } notation. Substituting the assumed solution  we find that 
the phase speed c must satisfy:

where is the adiabatic speed of sound.
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Pure Internal Gravity Waves

The vertical buoyancy force per unit mass is                and the component of the buoyancy 
force parallel to the tilted path is:

 The momentum equation for the parcel oscillation is then

with the general solution         - oscillations of frequency
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The above heuristic derivation can be verified by considering the linearized equations for 
two-dimensional internal gravity waves. For simplicity, we employ the Boussinesq 
approximation. Neglecting effects of rotation, the basic equations for two-dimensional motion
of an incompressible atmosphere may be written as

We now apply perturbations and linearize the above.
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The basic state zonal flow u and the density ρ0 are both assumed to be constant. The basic 
state pressure field must satisfy the hydrostatic equation 
while basic state of temperature satisfies

The linearized equations are obtained by substituting from the above into equations of motion 
and neglecting all terms that are products of the perturbation variables. Thus, for example, the 
last two terms in the vertical component of momentum equation are approximated as

The perturbed form of energy equation is obtained by noting that
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one gets

speed of sound 
squared

For buoyancy wave density fluctuations due to pressure changes are small compared with 
those due to temperature changes:

Therefore, to a first approximation      and the linearized equations of motion 
are: 

∂( )/∂z

∂( )/∂x

minus
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Operations on first two equations give the y component of the vorticity equation:

while eliminating θ' and u' from the two last equation gives

Brunt-Vaisala frequency is assumed to be constant.
Harmonic wave solutions have the form:

Here the horizontal wave number k is real because the solution is always sinusoidal in x. The 
vertical wave number m = mr + imi may. be complex or negative. When m is real, the total wave 
number may be regarded as a vector κ ≡ (k, m), directed perpendicular to lines of constant 
phase, and in the direction of phase increase, whose components, k = 2π/Lx and m = 2π/Lz , are 
inversely proportional to the horizontal and vertical wavelengths, respectively.
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 Substitution of the assumed solution yields the dispersion relationship

If we let k > 0 and m < 0, then lines 
of constant phase tilt eastward 
with increasing height  
(i.e., for φ = kx +mz to remain 
constant as x increases, z must 
also increase when k > 0 
and m < 0). 
The choice of the positive
root in  then corresponds to 
eastward and downward phase 
propagation relative to the mean 
flow with horizontal and vertical 
phase speeds 
cx = ν /k and , cz = ν /m.
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The components of the group velocity, cgx and cgz , are given by

The vertical component of group velocity has a sign opposite to that of the vertical phase 
speed relative to the mean flow (downward phase propagation implies
upward energy propagation). Furthermore, the group velocity vector is parallel to lines of 
constant phase. 
Internal gravity waves have the remarkable property that group velocity is perpendicular to the 
direction of phase propagation. Because energy propagates at the group velocity this implies 
that energy propagates parallel to the wave crests and troughs, rather than perpendicular to 
them as in acoustic waves or shallow water gravity waves.
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Topographic Waves

When air with mean wind speed u is forced to 
flow over a sinusoidal pattern of ridges under 
statically stable conditions, individual air parcels 
are alternately dis placed upward and 
downward from their equilibrium levels and will 
thus undergo buoyancy oscillations as they 
move across the ridges as shown.

In this case there are solutions in the form of 
waves that are stationary relative to the ground, 
i.e, ν = 0 . For such stationary waves, w 
depends only on (x, z) and solution  simplifies 
to:

resulting in dispersion relationship:

which determines vertical structure 
of such waves.
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For  m   is real. Solutions 
have the form of vertically propagating 
waves:

When m2 < 0, m = imi is imaginary and the 
solution  will have the form of vertically 
trapped waves:
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Pure Inertial Oscillations

If the basic state flow is assumed to be a zonally directed geostrophic wind ug, and it is 
assumed that the parcel displacement does not perturb the pressure field, the approximate 
equations of motion become:

We consider a parcel that is moving with the geostrophic basic state motion at a position 
y = y0 . If the parcel is displaced across stream by a distance δy, we can obtain its new zonal 
velocity from the integrated form the first equation:

The geostrophic wind at y0 + δy can be approximated as
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Substituting to the second equation of motion gives:

Depending on the sign of the coefficient on the right-hand side, the parcel will either be
forced to return to its original position or will accelerate further from that position. This  
determines the condition for inertial instability:

Viewed in an inertial reference frame, instability results from an imbalance between the 
pressure gradient and inertial forces for a parcel displaced radially in an axisymmetric vortex. 
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Inertia–Gravity Waves

When the flow is both inertially and gravitationally stable, parcel displacements are resisted by 
both rotation and buoyancy. The resulting oscillations are called inertia–gravity waves. The 
dispersion relation for such waves can be analyzed using a variant of the parcel method. 
Consider parcel oscillations along a slantwise path in the (y, z) plane:

 

For a vertical displacement δz the buoyancy force component parallel to the slope of the 
parcel oscillation is −N2δz cos α, and for a meridional displacement δy the Coriolis (inertial) 
force component parallel to the slope of the parcel path is −f 2δy sin α, where we have 
assumed that the geostrophic basic flow is constant in latitude.
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Thus, the harmonic oscillator equation for the parcel is modified to the form:

The frequency satisfies the dispersion relationship:

In general N2 > f2 indicates that inertia–gravity wave frequencies must lie in the range 
f ≤ |ν| ≤ N . The frequency approaches N as the trajectory slope approaches the vertical, and 
approaches f as the trajectory slope approaches the horizontal. For typical midlatitude 
tropospheric conditions, inertia–gravity wave periods are in the range of 10 min to 15 h. 

The heuristic parcel derivation can again be verified by using the linearized
dynamical equations. In this case, including rotation. 
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ADJUSTMENT TO GEOSTROPHIC BALANCE

In the course of the lecture we  showed that synoptic-scale motions in midlatitudes are in 
approximate geostrophic balance. Departures from this balance can lead to the excitation of 
inertia–gravity waves, which act to adjust the mass and momentum.

In order to discuss this adjustment  we utilize the prototype shallow water system. For
linearized disturbances about a basic state of no motion with a constant Coriolis parameter, 
f0, the horizontal momentum and continuity equations are:

Adopting the above calculation yields:

∂( )/∂x

∂( )/∂y
plus
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For f0 = 0 (nonrotating system) the vorticity and height perturbations are uncoupled, and we 
get a two-dimensional shallow water wave equation for h':

with the following solution:

However, for  f0 ≠ 0 the h and ζ fields are coupled and for motions with time scales longer than 
1/f0 (which is certainly true for synoptic-scale motions), the ratio of the first two terms 

is given by

which is small for L  1000 km∼ , provided that H >1 km. Under such circumstances the time 
derivative term is small compared to the other two terms, and the equation states simply that 
the vorticity is in geostrophic balance.
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If the flow is initially unbalanced, the complete equation can be used to describe the 
approach toward geostrophic balance provided that we can obtain a second relationship 
between h' and ζ' . Taking:

yields:

This, combined with

results in

the linearized potential vorticity conservation law. 
Thus, letting Q' designate the perturbation potential vorticity, we  obtain the conservation 
relationship:

∂( )/∂y

∂( )/∂x

minus
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This problem, solved by Rossby in the 1930s, is often referred to as the Rossby adjustment 
problem. As a simplified example of the adjustment process, we consider an idealized 
shallow water (ocean) system on a rotating plane with initial conditions:

Motionless “step” on the water surface. Using conservation relation 

and eliminating  ζ'   yields

which in the homogeneous case (h0 = 0) yields the dispersion relation

Because initially h' is independent of y, it will remain so for all time. Thus, in
the final steady state solution  becomes
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The Rossby radius of deformation may be interpreted as the horizontal length scale over 
which the height field adjusts during the approach to geostrophic equilibrium. 
For |x|>> λR the original h' remains unchanged. Substituting from the last equation into 

Shows that the steady velocity field is geostrophic and nondivergent:

The steady-state solution  is shown in the next page.
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Substituting:

to the remaining four equation one obtains:

which yields the dispersion relation for hydrostatic waves:

Because hydrostatic waves must have (k2 + l2)/m2 <<1, the above indicates that
for vertical propagation to be possible (m real) the frequency must satisfy the 
inequality |f | < |ν| <<N . I is just the limit of 
when we let

which is consistent with the hydrostatic approximation. 
If axes are chosen to make l = 0, it may be shown that the ratio of the vertical to 
horizontal components of group velocity is given by
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