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ABSTRACT

Numerical solutions to the droplet collection equation, using certain polynomial approximations to the
gravitational collection kernel, are examined to learn whether they usefully describe the evolution of a
cloud droplet size distribution. The results for typical continental and maritime clouds show that the dis-
tribution is closely described if the kernel is replaced by

9.44X 109(x2+42), RE50 um; 578X 10%(x+9), R>50 um,
or by

1.10X 10922, RS0 um;  6.33X10%, R>50 pm,

where R is the radius of the larger droplet, x its volume in cubic centimeters, and y the volume of the smaller
droplet.

From the standpoint of including collision and coalescence of droplets in multi-dimensional cloud models
an analytic solution to the collection equation is desirable. An attempt should be made to find such solutions
based upon either of the above approximations. If these cannot be found because of the piecewise nature
of the approximations, then solutions based on the portions for R< 50 um would still describe the first few
hundred seconds of droplet growth. A comparatively poor description of the droplet distribution comes
from the most physically realistic analytic solution presently existing, based on the kernel approximation
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B(x+y)+Caxy.

i. Introduction

Satisfactory inclusion of droplet collision and coales-
cence in a theoretical cloud model requires knowing
their effect on the spectral distribution function
n(x,¢)dx. This gives at time ¢ the mean number density
of droplets with individual volumes x to x+dx. The
function #(x,!) is obtained by solving a scalar transport
“collection” equation of the form

nlx,t)
ol

z/2
- f n(x—y, ) K(@—y, y)n,)dy

) / K@yniddy. (1)

The first integral represents the increase in #2(x,t)
expected because of the binary collision and coalescence
(collection) of droplets whose volumes x—y and 9 sum
to the volume x. The second integral represents the
decrease in #(x,t) expected because of binary collision
and coalescence of x-droplets with larger and smaller
ones. The stochastic nature of the droplet collection
process enters (1) through the collection kernel K (x,y).
This quantity is related to the probability that in a
given interval of time there will be in a cloud a collec-

! Present affiliation: Cooperative Institute for Research in
Environmental Sciences, University of Colorado, Boulder.

tion event involving two particular droplets of volumes
x and y. Derivations and discussions of (1) can be
found in Twomey (1964, 1966), Berry (1965, 1967,
1968), Scott (1967, 1968b, 1972), Warshaw (1967,
1968a), Long (1971, 1972a, b) and Gillespie (1972).
Solutions to (1) have been either numerical or
analytic depending upon the form of X (x,y). Numerical
solutions (Twomey, 1964, 1966; Berry, 1965, 1967;
Warshaw, 1967, 1968b) have been based upon a gravi-
tational collection mechanism, for which the kernel is

K (x,y)=7[R(x)+7 ) PE@N[V () —-V ()],
x2y, (2)

where R(x) is the radius of the larger collector droplet,
and 7(y) is the radius of the smaller collected droplet
(both droplets are assumed to be spherical); E(x,y) is
the collection efficiency of the two droplets and is given
by the product of their collision efficiency E.(x,y) and
coalescence efficiency E.(x,y); and V is the droplet
terminal fall velocity. Analytic solutions to (1) have
been obtained, principally by Melzak (1953), Golovin
(1963a), Scott (1968a), and Drake and Wright (1972),
for approximations to K given by the polynomials:

Pxy)=A (3a)
P(x,y)=B(x+y) (3b)
P(x,y)=Cxy (3c)
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Ply)=A+B(x+y) (3d) takes us back to the tabular problem associated with
numerical solutions to (1).

P(x,y)=B(@x+y)+Cxy (3e) Up to now analytic solutions to (1) have not been

proposed as possible replacements to numerical solu-

P(x,y)=A+B(x+y)+Cxy, A=B/C. (3f)  tions because the “polynomial” kernels in (3) for which

This paper examines how well these and certain other
polynomials approximate K (x,y) and how well solu-
tions to (1) based on them correspond to numerical
solutions based on K. A close correspondence would
justify replacing the numerical solutions by analytic
solutions based on the polynomials.

This investigation is important because numerical
solutions to (1) have a limited utility, especially if they
are to be incorporated, along with the predictions of
other cloud physical equations, into an overall descrip-
tion or model of a cloud. For instance, a numerical
solution appears in tabular form. Its use in other cloud
physical equations is thus complicated. The numerical
computation time required to obtain #n(x,f) throughout
a cloud model is given as the time required at any
point in the model (~0.1-109, real time) multiplied by
the number of its grid points (~10%-10%). The compu-
tation time is then prohibitive.

With these drawbacks to numerical solutions in mind
two alternative methods for solving (1) have been
proposed. Bleck (1970) has developed an approximate
numerical method for solving (1) based on using in
place of n(x,t) its a-weighted mean value over a small
interval about x. This is supposed to require less com-
puter time than a direct numerical solution. The time
on a CDC 6600 computer actually involved for Bleck’s
calculation is 11 msec per iteration, which is not ap-
preciably smaller than the 13 msec per iteration re-
quired by Berry (1967) in his early numerical solutions
to (1). Later numerical solutions have required more
time as the techniques for approximating the integrands
in (1) have become more sophisticated (Reinhardt,
1972), but these later solutions are also considerably
more accurate. It is doubtful whether the approximate
solutions of Bleck are accurate descriptions of droplet

growth, especially in the ‘“‘tail” of the distribution, -

where we find those large drops which are all-important
in the development of precipitation. We also note that
Bleck’s method yields only a tabular version of the
size distribution.

Drake (1972) has discussed a method for solving (1)
by expressing #(x,f) in terms of its statistical moments
M;(¥), i=0, 1, 2, ... . This was proposed earlier by
Golovin (1963b, ¢, 1965) and Enukashvili (1964a, b),
and has been discussed by Long (1972b, p. 48); in
principle, it yields a closed expression for n(x,f) even
for a kernel as complicated as that in (2), once the
time-dependence of a number of the moments is ob-
tained. The number of moments required to reproduce
the distribution is not known, but for an accurate
description of the tail region it may be so high as to
require the moments to be obtained numerically. This

they are valid do not seem to be close approximations
to the actual kernel. Nevertheless, the analytic solu-
tions are all algebraic functions of x and ¢, albeit com-
plicated ones, and are simply evaluated by performing
certain straightforward sums. This suggests they might
be usefully incorporated into cloud models, provided
they correspond closely with numerical solutions.

This paper examines whether there is a close corre-
spondence between the solutions. First, we determine
how well each polynomial P (x,y) in (3) matches X (x,y)
in (2). We obtain those values of the coefficients 4, B
and C which minimize the deviation (defined in a
certain sense) between K and the respective polynomial
P. Comparing this minimum deviation for the various
polynomials will tell us which are closest to the actual
kernel and most likely to lead to realistic analytic
solutions to (1) as compared to actual, numerical solu-
tions. A numerical integration of (1), using in place of
K the best polynomials in (3), will show how realistic
these solutions are.

Certain polynomials other than those in (3) also are
considered and their coefficients evaluated. These
polynomials turn out to be closer to K, and it will be
suggested that analytic solutions to (1) be sought for
them. This will be supported by a numerical integra-
tion of (1), using them in place of K, which will show
a behavior for #(x,f) remarkably close to that given by
numerical solutions based on K itself.

2. Evaluation of K(x,y)

The first step in obtaining the coefficients 4, B and
C in the polynomials P(x,y) is to evaluate the actual
kernel K (x,y) in (2).

The collision efficiency for any droplet pair is com-
puted from the efficiencies for particular droplet pairs
calculated by Shafrir and Gal-Chen (1971) and by
Klett and Davis (1973). These workers give E.(Ry)
for various R between 10 and 300 um and for most
values of 0<7< R. For droplet pairs within the range
of their calculations E, is here obtained by interpolating
on their results. Otherwise, E, is obtained with extrap-
olation techniques, except for R>400 um, where it is
set equal to unity.

The coalescence efficiency is taken as unity because
that knowledge of it which presently exists (Woods
and Mason, 1964; Whelpdale and List, 1971; Brazier-
Smith et al., 1972) covers only a limited range of
droplet pairs.

The terminal velocity is evaluated using the ap-
proximate formula developed by Long and Manton
(1974). This formula is based on the data of Gunn and
Kinzer (1949) and Beard and Pruppacher (1969) ob-
tained at 1013 mb and 20C. An altitude correction to
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Fic. 1. Actual droplet-collection kernel K (x,y).

the formula is made because the collision efficiencies
of Klett and Davis (1973) and Shafrir and Gal-Chen
(1971) are for 900 mb and OC. For droplets <15 um
this correction is derivable from the Stokes terminal
velocity formula and is due to the change in the
dynamic viscosity of air with temperature. For droplets
> 1690 um the correction of Foote and du Toit (1969)
is applied. For intermediate droplets a linear interpola-
tion with respect to the logarithm of the droplet
radius is used.

Fig. 1 displays representative values of the collection
kernel evaluated in the above manner.
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Fic. 2. The five droplet-pair domains over which the poly-
nomials P(x,y) approximate the collection kernel K(xy).
Domain I is as outlined, domain II includes domain I plus the
additional area denoted by the roman numeral IT, domain III in-

cludes domain IT plus the additional area denoted by the roman
numerial ITT, etc.
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3. Obtaining the approximating polynomials

There have been two previous determinations of the
coefficients 4, B and C in (3). Golovin (1963a) evalu-
ated the quotient K (x,y)/(x+7y), found it held fairly
constant at a value B~6000 sec™ for a wide range of
R2>50 um, and concluded that for these droplets
B(x+y) is a reasonable approximation to K (x,y). For
smaller R, this approximation is too large by up to an
order of magnitude, and here the technique (Scott,
1968a) has been to require the coefficients in any ap-
proximating polynomial to be such that it coincides
with K for R=30 um and =10 pm.

The coefficients in each approximating polynomial
are here obtained by requiring that the rms deviation
D(P;K) between the logarithm of P(x,y) and the
logarithm of K (x,y) be a minimum. In particular, it is
required that

D(P; K)

3
/ / [inP(2,) ~InK (1) Td(Iny)d(ina)
S
- @

/ / d(lny)d(Inx)
8
be a minimum.

For reasons of accuracy the deviation between the
logarithm of P(x,y) and the logarithm of K(x,y) is
minimized rather than the deviation between the func-
tions themselves. If this were to be minimized, the in-
crease in K (x,y) of several orders of magnitude that is
observed from small to large R (see Fig. 1) would lead
to a polynomial depending almost exclusively on K at
large R and very little on K at small and medium R.
For similar reasons the integration in (4) is carried out
with respect to the logarithm of x and y rather than,
with respect to ¥ and y themselves.

The integration domain S will depend on when in the
history of a droplet population the polynomial P (x,y)
is approximating K (x,y). Inasmuch as P(x,y) is limited
in how well it approximates K (x,y), it seems advisable
when obtaining a solution to (1) based on P(x,y) to
use for small ¢ (when all droplets are smalil) a version
of the polynomial fitted to values of the kernel for
these droplets alone, and to use for longer ¢ (when there
are more large droplets) a version of the polynomial
taking more into account their kernel. Fig. 2 displays
the five domains S used here over which distinct
versions of each polynomial P(x,y) are fitted to K (x,y).
For small ¢ the solutions to (1) obtained here are based
on the domain I version of P(x,y), but as time passes
and large droplets are created the solutions are based
on versions for domains II, IT1I, etc.

The criterion for changing from one version of P to
the next derives from the requirement that the solu-
tion to (1) give a good description of the size of the
100th-largest drop per cubic meter of cloud. Since there
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are around 100 drops per cubic meter in moderate
rain, the size of the smallest of these, x100(£), will tell
us how fast precipitation is being produced by collision
and coalescence. Furthermore, because the larger drops
through their larger kernels have the greatest effect
on the entire distribution, accurate knowledge of their
sizes will in turn improve the overall solution to (1).
The 100th-largest drop grows approximately continu-
ously, at the rate

dx100(t)
dt

z190(t)
= / Plaroo(t),y Jn(y,0)dy. ®)

In order to always use the most correct version of P in
(5), we change from that version of P(x,y) for one
domain to that for the next as x100(f) grows from the
one domain into the next.

When changing from one version of P to the next it
is necessary to re-initialize the droplet distribution at
its then current value and continue the solution with
the new version of P. The analytic solutions to (1)
based on the polynomials in (3) can be evaluated from
series expressions given in Scott (1968a) and in Drake
and Wright (1972), provided the initial distribution is
either a combination of é-functions or a gamma dis-
tribution in x. Because the re-initialized distribution
will, in general, not have either of these forms, after
the first changeover time it will not be possible to use
the series expressions of Scott and of Drake and
Wright to obtain #n(x,). It is then necessary to use
more general expressions which these workers have
derived for arbitrary initial distributions. These ex-
pressions are not readily evaluated, however, and be-
cause the purpose of this paper is only to show how
well analytic solutions to (1) correspond to solutions
based on the actual kernel K (x,y) in (2), the analytic
solutions have been obtained simply by numerically
integrating (1). The results will indicate whether an
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attempt should be made to evaluate n(x,f) using the
general expressions,

Each polynomial P(x,y) is fitted to K (x,y) as follows.
Because P(x,y) can be written as

Pla,y)= 2 Cunx™ym, (6)
m=0
n=0

the condition that it minimize D{P; K) requires the
derivative of D(P; K) with respect to each of the
potentially non-zero coefficients C.,, must equal zero.
[These potentially nonzero coefficients would be 4, B
and C in (3).] This requirement on D(P; K) and the
additional stipulation that P(x,y) should have x-y
symmetry like the polynomials in (3) together imply
that the coefficients Cy, minimizing D(P; K) satisfly

dD(P;K) 4D(P;K)
1
4

=0, m*n, (7a)
aC”VL" acnm
dD(P; K)
—_—= (7b)
acmm

If x-y symmetry is not required the second term in
(7a) does not appear, but the additional condition

aD(P; K)
Com

must be included. If symmetry is retained but the
polynomial in Eq. (3f) is fitted to K, then in place of
(7a) and (7b) must appear equations allowing for the
requirement 4= B2?/C. The remainder of this section
assumes polynomials symmetric in « and y. The steps
needed for the other types of polynomials should be
clear.

Applying (7a) and (7b) to (4) and using (6) ylelds
the following expressions for the minimizing coefficients:

[

Crun=exp

~

K(x,y)

xmyn+xny7n
——d(ny)d(l
/s/ P(x,y) (el n,x) J

/S / zf:xy:) ln[P

—

Crnm=exp

K(x,
) ]d (Iny)d(lnx)
Prnly) m=En (8a)
:'d (Iny)d(Inx)
(8b)

L / / ’y)d(lny)d(lnx)

The polynomial Pn.(x,y) appearing in Egs. (8) is de-

fined by
Pon(,y)= P(x:y)/cmn-

Egs. (8) are used in the following way to evaluate
each coefficient C,,,. First, estimates are made for all
of the potentially non-zero coefficients in the poly-
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TasLE 1. Six symmetric polynomials P (x,v) approximating the actual collection kernel K (x,y).
Approximating
polynomial Coefficients minimizing D(P; K) for each droplet pair domain Units of
P(xy) I 11 II1 Iv - coefficient
1. A A=1.20X10"* 1.10X1073 6461073 3.14 X102 1351071 cm® sec™?
(12) an (22) (28) (38)
2. A4+B(x+y) A=0 0 0 0 0 cm® ‘sec™?
. B=28.83X102 2.15X 103 3.28 X103 4.10X10° 448108 sec™!
(4.8) (4.2) (3.9 (2.9) (2.6) '
3. Cxy C=5.49X10w 6.27 X 10w 4.60X 1010 2.80X 101 1.50X 10% cm™3 sec?
“.7) (5.3) 7.7 (13) (22)
4. A+B(x+y)+Cxy A=4.41X10""7 7.15X10™¢ 6.93 1073 4.07X10™ 2.55X103 cm® sec!
(4=B2/C) B=1.36X102 5.05X102 9.51 X102 1.23 X108 1.45X10% sect
C=4.18X10w 3.29X10* 1.30X< 10w 3.70X10° 8.23 X108 cm™3 sec™!
(4.6) (4.8) (5.6) 6.7) (8.3)
5. A4+B(zx+y)+Cxy A=0 0 0 0 0 , cmd sec!
B=4.16X102 1.62X10? 3.24X10? 4.10X10° 4.48X10* sect
C=2.24X10w 6.33X10° 8.80X 107 0 0 cm™ sec™!
(4.5) (4.0) (3.4) 2.9) 2.6)
R ‘
6. Y Cunpa™y" Cro= 3.46X10! 1.4210% 3.04 X 10% 4.04 X108 sec™!
=0 Coi=Co Cio Cro Chro Cuo sec™?
Cap=9.44X10° 5.28X10° 5.05% 108 3.33X107 1.70108 cm™3 sec™!
Co2=C20 Cao Cx Ca 20 cm™3 sect
2.3) (2.4) 2.9 2.8) (2.6)

Note: For polynomial 6 those coefficient values not explicitly included in Table 1 were found to converge rapidly toward zero. The
parenthetical numbers give exp[ D (P; K)] for each polynomial-domain combination. For example, for polynomial 1-domain I the figure
(12) means that throughout domain I, polynomial 1 (in rms terms) is within a factor of 12 of the actual kernel.

nomial. The right-hand sides of (8a) and (8b) are then
evaluated (using tenth-order Gauss-Legendre numerical

_quadrature) for all values of m and » corresponding to
the non-zero coefficients. The new estimates obtained
for each Cnn are then used to reevaluate the right-hand
sides of (8a) and (8b) to obtain another estimate for
each coefficient. This iterative procedure continues
until each coefficient is stationary to at least three
significant figures. At the same time D(P;K) is ob-
served and is found to decrease rapidly to a stationary
value.

The starting estimate for each coefficient Cna (or
Cmm) in P(x,y) is obtained from the requirement that
the factor Cpnx™y"+Camx™y™ (or Cpmx™y™), when
evaluated for R=20 um and r=10 um, be equal to
the fraction 1/N times the actual value of the kernel
for these two droplets. The integer N is chosen equal
to the number of distinct coefficients in P(x,y) that are
initially permitted to be non-zero [e.g., N=2in (3e)].
This method for selecting the starting values of the
coefficients is similar to that used by Scott (1968a) in
actually evaluating the coefficients 4, B and C in
Egs. (3a), (3b) and (3¢). Other starting values lead to
essentially identical final coefficients.

4. Estimates for K(x,y)

The results in Section 5 will be better understood if
we develop some estimates as to how the kernel K (x,y)
depends on x and y. The collision efficiency can be
approximated by

E(Rr)=~ER[1—ky/r], for RZ350um,

where the factors #; and k. approximately equal 4.5
X 10* cm~2 and 3X 10~* cm, respectively. E, is given by
E.(Ry)~1, for RZ50um.

The relative terminal velocity can be expressed by
V(R)—V(r)=ks(R2—7¢*), for RSS50um,

where k3=~1.1X10% cm™! sec™! and R is in centimeters,
and by

V(R)~V{r)=kyR—ks*),

where k4=8.5%X10% sec. The quantities k5 and « are
both approximately unity for 72 50 um, but for smaller
r they are approximately 1.3X10? cm™ and 2, respec-
tively. Combining these expressions with Eq. (2) yields

K (2,9) ~9X10[ad 93 PLad (1= k/y ) [wt—yt],
for R<50um, (9)

for 50 pm S RS400 um,

where ko'= (47/3)%,, and

K (x,9) = 6.4 X 10 a4y P ot —ks'y/],
“for 50 umSRS400 pm, (10)

where k5= (r)=1BE, FEqgs. (9) and (10) show that
K increases roughly as #? for small droplets and as x
for larger ones. We also note that K does not depend
on y in the same manner as it does on x. It can be ex-
pected to increase less strongly with y. In fact, K will
decrease as y approaches x. Thus, coefficients of y and -
4% in a polynomial approximating K should be smaller
than those for & and x% Recalling that each polynomial
in_(3) has identical coefficients for x and for y, it can
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TasLE 2. Three polynomials P (x,y) approximating the actual collection kernel K (x,y).
Approximating . . . .
polynomial Coefficients minimizing D{P; K) for each droplet pair domain Units of co-
Px,y) 11 111 AV efficient _
B 1. A4+Bix+Bay A=0 0 0 0 0 cm % sect
B;=1.15X10? 2.63X10? 3.86X10? 4.6810% 5.02X10? sec™!
By=0 0 0 0 0 sect
4.1) (3.6) (3.0) (2.6) (2.3)
2. A4+ Bx+Byy+Cry A=0 0 0 0 0 cm? sect
e Bi=791x10*  2.06X10°  373X10°  4.68X10°  5.02X10° sect
B,=0 0 0 0 0 sec?
C=1.10X10" 4.86X10° 1.78 X108 0 0 cm™3 gec!
(4.0) (3.5) 3.0) (2.6) (2.3)
3. ZZ Crnx™ym Cio=0 1.17X10% 1.93 X102 3.67X10° 4.67X108 sec™?
m,n=0
C=1.10X101* 5.39x10? 4.57 X108 2.91 X107 1.26 X108 cm™ sec™!
(1.9) (2.2) (2.6) 2.5 (2.3)

Note: For polynomial 3 those coefficient values not explicitly included in Table 2 were found to converge rapidly toward zero.

be expected that even if the deviation between K (x,y)
and these polynomials is minimized by optimizing their
coefficients, this minimum will only be relative, com-
pared to that attainable with unrestricted (not sym-
metric) coefficients. For this reason we have also
approximated K (x,y) by polynomials with independent
coefficients. This is also in the hope that analytic solu-
tions to (1) may some day be found for them.

5. The approximating polynomials

Tables 1 and 2 display the approximating polyno-
mials for domains I to V.

a. Symmetric volume polynomials

The first five polynomials in Table 1 are those for
which (1) can presently be solved analytically. Ap-
proximating polynomials of degrees 2, 3, 4 and 5 also
were considered, and it was found that they all con-
verge to the sixth polynomial in Table 1 of degree 2.
Third-, fourth- and fifth-degree terms evidently play
an insignificant role in an approximation to the collec-
tion kernel, if domains as large as those considered
here are used. Approximating polynomials of degrees
six and above were not considered, but they should
reduce to the second-degree polynomial.

The parenthetical numbers in Table 1 give exp
X[D(P; K)] for each polynomial. The figure (4.8), for
example, means that over the indicated domain there
is a 480% rms deviation between P(x,y) and K(x,y).
The significance of an error of such magnitude cannot
really be assessed without comparing solutions to (1)
based on P with those based on K. Section 6 will
make this comparison, but it seems clear at this point
that polynomials with smaller values of exp[ D(P; K)]
should lead to more physically realistic solutions to (1).
An error of a few hundred percent actually may not be
important, since Fig. 1 indicates about a 10009, varia~
tion in K itself for a fixed R and varying 7.

From Table 1 and Fig. 3 we note that, as expected,
the best-fit constant polynomial 4 [in Eq. (3a)] in-
creases in value as the domain includes larger droplets
having larger kernels. Scott’s (1968a) value for 4 is
never the best fit to the kernel for any of the domains
considered here although it does fit the kernel well for
a domain somewhere between I and II. :

The second polynomial in Table 1, A+B(x+y) in
Eq. (3d), fits K(x,y) best when 4 is zero. Thus, no
improvement to the B(x+v) approximation [in Eq.
(3b)] is obtained by adding to it a non-zero constant
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F16. 3. Comparison of the approximating polynomial 4 and
the actual collection kernel K(x,y) for r/R=1. Heavy solid line
denotes the actual kernel. Light solid line denotes 4 as proposed
by Scott (1968a). Dashed lines denote polynomials determined in
this paper and labelled according to domain of approximation.
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F1c. 4. As in Fig. 3 except for polynomial B (x+y). Light solid
line denotes B(x+7y) as proposed by Scott (1968a).

factor. This is expected from Egs. (9) and (10), which
indicate that the dominant power of ¥ in any domain
considered here lies between «! and x? and not between
2® and x'. Analytic solutions to (1) obtained by Drake
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Fic. 5. As in-Fig. 4 except for /R=0.5. Light solid line denotes
B(x+y) as proposed by Golovin (1963a).
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and Wright (1972) for A+B(x+y) evidently will be
closest to reality if in them 4 is set equal to zero; hence,
the best of these solutions will be those based on the
simpler kernel B(x+47y). Fig. 4 shows how B(x+v)
varies with approximation domain and indicates that
Scott’s (1968a) choice for B happens to be appropriate
for a domain intermediate to IT and III. Fig. 5 indi-
cates that for each domain B is smaller than the value
of 6000 sec™! proposed by Golovin (1963a). This is
because here smaller collector droplets (R<50 um) are
also taken into account.

The polynomial Cxy [in Eq. (3c)] is in every case
considerably smaller than the candidate proposed by
Scott (1968a) (see Fig. 6). This is- significant for the
validity of analytic solutions to (1) based on this kernel
and will be discussed later in this section.

Because the requirement A= B?/C restricts the range
of coefficients in polynomial 4 [in Eq. (3f)] it is a
poorer fit to the kernel than the next listed polynomial,
A~+B(x+y)+Cxy, -identical except for independent
coefficients. Table 1 indicates this latter polynomial
fits K(x,y) best when 4=0. It thus reduces to the
polynomial in (3e) for which Drake and Wright (1972)

«5
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Fic. 6. As in Fig. 3 except for polynomial Cxy. Light solid line
denotes Cxy as proposed by Scott (1968a).
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have found analytic solutions to (1). Of all those poly-
nomials in Egs. (3) for which analytic solutions to (1)
exist, polynomial 5 is closest to the actual kernel, at
least for domains I, II and III. For domains IV and V
it is equalled by B(x-+y) as the best polynomial.
Analytic solutions to (1) based on polynomial 5 should
be the most realistic.

The sixth polynomial in Table 1, second degree in «
and in y, improves upon the others, most dramatically
for domains I, II and IIL. Figs. 7 and 8 show the
relative extent to which it and the polynomials of
degree 0 and 1 (first and fifth in Table 1) approximate
K (x,y).

The results in Table 1 are consistent with our dis-
cussion in Section 4 of the x-dependence expected of K.
Polynomial 6 increases with x? for small droplets; as
the approximation domain includes larger droplets it
increases more as the first power of x. Similarly, the
coefficient B for the linear terms in polynomials 4 and 5
increases relative to 4 and C as the approximation
domain includes larger droplets. For domain I the
coeflicient Cjo in polynomial 6 is similar to the pre-
factor in Eq. (9). For large domains B in polynomials
2 and 5 is similar to the prefactor in Eq. (10). The
factor B is smaller for the polynomials, however, be-
cause each allows for collector droplets smaller than
50 pm.

b. Volume polynomials

Table 1 indicates that y plays the same role as % in
any polynomial approximating K (x,y). This is only

-1 ——r—rT T T T

LOG 1 [COLLECTION KERNEL (em3 s7)]

R{pum)

F1c. 7. Comparison for domain I of the actual kernel and the
polynomials 1, 5 and 6 in Table 1 of orders 0, 1 and 2, respectively.
Parenthetically attached to each graph is its rms deviation
exp[ D(P; K)] from the actual kernel.
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1 1 | I
200 40O 800
Fi6. 8. As in Fig. 7 except for domain IV.

because of the imposed x-y symmetry. Section 4
showed that the smaller droplet actually has a second-
ary influence on the kernel and suggested that a better
approximation to K({x,y) should result if symmetry is
not required. Removing x-y symmetry led to the
polynomials in Table 2. In every case they approximate
K(x,y) better than their counterparts (2, 5 and 6) in
Table 1.

This does not imply no y-dependence in the kernel
but simply indicates that on the scale of the approxima-
tion domains used here and to within the resolution
provided by integer powers of x and y, any polynomial
potentially having some terms involving only y ap-
proximates K (x,y) best if these terms are all zero. The
gross behavior of K(x,y) is thus determined only by
the size of the larger, collector droplet. This is not
surprising, since Fig. 1 indicates the kernel changes
by several orders of magnitude as x varies over its
natural range but varies by only about one order of
magnitude as y varies over its range.

c. Piecewise approximations fo K

Tigs. 5 and 7 indicate K (x,y) may be closely approxi-
mated by two separate polynomials, one for domain I
where K behaves as 4? and another for that portion of
domain V exterior to domain I where it behaves as .
Polynomial 6 in Table 1 or polynomial 3 in Table 2
can serve as the domain I approximation. The Golovin
polynomial would be suitable for the larger droplets
but can be improved slightly using the techniques of
Section 3. The following two piecewise approximations
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Fie. 9. Comparison of the approximating polynomial in (11)
and the actual kernel. The parenthetical numbers give
exp[D(P; K)] for the two parts of the polynomial, fitted over
domain I and over that portion of domain V exterior to domain I.

to K have thus been obtained :
Px,y)=9.44X10°(x2+92); exp[D(P; K)]=2.3,

for R<50um (1la)
expLD(P; K)]= 1.6,

for R>50um (11b)

P(x,9)=5.78X10*(x+y);

and
Plx,y)=1.10X10"2; exp[D(P; K)]=1.9, A
for R<S0um - (12a)

exp[D(P; K)]=1.4,
for R>50 um.

P(x,y)=6.33X10%;
(12b)

The approximation in (11) is displayed in Fig. 9.
Whether the collection equation can be solved analyti-
cally using these piecewise approximations is an open
question because some of the mathematical techniques
heretofore used are not applicable. Nevertheless, the
small values of exp[D(P; K)] for both approximations
indicate the merit in searching for such solutions.
Section 6 will show how well numerical solutions to (1)
based on these approximations correspond to solutions
based on the actual kernel.

d. Validity of the xy term

- Tables 1 and 2 show that for the smaller domains
as terms of higher degree are included in a polynomial
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it approximates K better. This is consistent with
Section 4, where estimates of the x and y dependence of
K were made. Drake (1972) has argued, on the other
hand, that any polynomial containing an xy term or
terms increasing as fast as xy is probably a poor ap-
proximation to the collection kernel. Drake’s argument
is based on the observation that if the kernel has the
form Cxy then there is a time 7 given by

T=[CM,(to) 7, (13)

where M. (ty) is the initial value of the second-order
moment of »(x,f), such that for /2 r solutions to the
collection equation based on Cxy become meaningless.
In particular, as t— 7, M2(}) > + o, and for t>7
liquid water is no longer conserved (McLeod, 1964).
Drake also shows that if the kernel has the form
A+B(x+y)+Caxy, where A= B?/C, then

r=[CM,(le)+BL]™, (14)

where L is the liquid water content of the droplets. If
the kernel has the form B (x+vy)4-Cxy then 7 is given by

r=In[142BL/CM,(t:)]/ (2BL). (15)

In evaluating 7 in (13) Drake (1972) used a realistic
value for M.(t,) but for C he used Scott’s (1968a)
value of 3.8X 10" cm?® sec™™. This is considerably larger
than the corresponding domain I (small droplet) value
given in Table 1. Drake’s 7 of 315 sec is thus considera-
bly smaller than the 2200 sec predicted here. Egs. (14)
and (15) can also be used to evaluate 7. One might
assume, using the same rationale as Scott (1968a),
that for the (30 um, 10 um) droplet pair the constant,
linear, and quadratic terms in A+ B(x+v)+Cxy each
equal one-third the actual kernel, and the linear and
quadratic terms in B{(x+9)-+Cxy each equal one-half
the actual kernel. For L=10-% cm? of water per cubic
centimeter of air this implies 7 in (14) is 630 sec and 7
in (15) is 440 sec. These times are also smaller than the
respective times of 2100 sec and 2000 sec obtained
using B and C in Table 1.

It is easy to understand why solutions to (1) based
on polynomials containing an xy term may be valid
only for ¢< 7. This can be understood even though
these polynomials approximate K better than polyno-
mials of lower degree, such as B(x-+4y), which yield
solutions valid at all times. The following expression
is simply derived from (1) and shows how the kernel
affects M (7):

(ZMg (t)
dt

= /” yn(y,t)/a.’ an(x,) K (x,y)dxdy.  (16)

Any kernel containing an xy term will predict an in-
finite value for M (f) at some finite {=r. For B(x-v),
on the other hand, M,(¢) will exponentially increase
with time but still be finite at any finite time. Physi-
cally, the xy term predicts too rapid growth for the
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large drops in a cloud. For example, Cxy is fairly close
to K(x,y) in domain I (see Fig. 6), but if it is extrap-
olated to sufficiently larger droplet sizes it will be
many times larger than K. An extrapolation of this
type occurs in Eq. (16) in extending the integration
variables # and y beyond domain I. This is not im-
portant so long as there are no droplets beyond domain
I (7 is thus positive) but, once these exist, because Cxy
is too large they will grow too rapidly and M, (¢) will
become too large. It will become infinite at {=7. The
same behavior will occur using any polynomial with
an xy (or an 2?) term.

The restriction to times {< 7 (or, alternatively, to
the poorer first-degree polynomials) is avoided here by
changing from one version of a polynomial to the next
as the droplets grow. This procedure (see Section 3) is
designed so that P(x,y) for the 100th-largest droplet
is similar to K (x,y) in (2). Because K behaves linearly
with x for R>50 um, P(x,y) will behave more linearly
as the changeover from one version to the next occurs,
and 7 will either be pushed back or made infinite.
Specifically, by changing from one version to the next
of a polynomial containing Cxzy, a smaller value of C
will come into effect (see Tables 1 and 2), the linear
term B(x+y) or Byx will predominate, and M. () will
behave more as an exponentially increasing function
than as one going to infinity in a finite time. The
closer to exponential its behavior becomes the longer
and less restrictive 7 will become. If C— 0, the be-
havior will become exactly exponential, 7 will become
infinite, and no restriction will exist at all. (This will
occur for polynomial 5 in Table 2 once the domain IV
version comes into effect.) The results in the next
section show that the restriction to ¢<7 is indeed
avoided by changing from one version to the next as
the droplets grow.

6. Solutions to the collection equation

Solutions to (1) have been obtained using several of
the better approximations in Tables 1 and 2. This
section compares these solutions with those based on
the actual kernel in (2). The polynomials used are 2, 5
and 6 in Table 1, all those in Table 2, and those in
Eqgs. (11) and (12). Analytic solutions to (1) have been
found to date only for polynomials 2 and 5 in Table 1.
The remaining polynomials more closely approximate
K(x,y), however, and on the basis of the results in this
section it will be suggested that analytic solutions be
sought for some of them.

In every case, the collection equation is solved by
numerical integration. The reasons for this have been
discussed in Section 3. The numerical techniques used
are essentially those developed by Reinhardt (1972)
and can be trusted to yield reliable answers. As already
stated, when solving (1) using any given polynomial
[except those in (11) and (12)] we change from one
version to the next according to the size of the 100th-
largest drop. The supposition in Section 5 that this
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TaBre 3. Comparison of T and 747 for the polynomial
B(x+y)+Cxy: T is the changeover time from the current version
of the polynomial to the next, and T+ the period of validity of a
solution to (1) based on the current version. All values are in
seconds.

Domain of current version

I II II1 v v
T 335 800 1205 1545
THr 1049 1108 1659 = ®

would extend the period of validity of the solutions
could be explicitly confirmed for the B(x+y)+Cuxy
polynomial (see Table 3). It was implicitly confirmed
for most of the other polynomials by noting that
throughout the period of integration (from 0 to 1800
sec) liquid water was conserved, at least within the
errors of the numerical process. McLeod (1964) has
shown for the Cxy kernel that once 7 is surpassed L
is no longer conserved. When using polynomials 6 in
Table 1 and 3 in Table 2 liquid water was not con-
served in the maritime cloud after about 350 sec and
in the continental cloud after about 650 sec. These
polynomials thus yield valid solutions to (1) only in
the early stages of a cloud’s evolution. Even though the
domain I versions of polynomials 6 and 3 are partly
incorporated in (11) and (12) for these approximations
liquid water was conserved at all times. This is because
(11) and (12) better describe the kernel at large droplet
sizes.

In each case the initial distribution has the well-
known form

n(x,tg) =

N2(l0) w(i>ve—(v+l)2Ixo. (17)
L T@+1)

Xo
In (17) N (%) is the initial number density of droplets
of all sizes and equals 50 cm™® (maritime clouds) or

T T T
N (to) =200em™
2:5) : t =600s
Initial distribution
3 2:0F K{xy)—--- (11),Cyp (x ’Y)OCm(XZQyz) N
o‘o (‘2)'C|()X0C10x2
S
g 15 B(xey)+Cxy J
N
<@
€
€ 10 4
2
o
05 J
0 50

R{(pm)

Fic. 10. Liquid water distribution at 600 sec in a typical con-
tinental cloud, as predicted by the actual collection kernel
K(x,y) in (2) and as predicted by various polynomials approxi-
mating K.
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. F1c. 11. As in Fig. 10 except at 1800 sec.

200 cm~® (continental clouds); and L is the liquid water
content of all the droplets taken together and equals
10~% cm?® of water per cubic centimeter of air. The
parameter v is given by

v=D,2—-1,
where D, is the relative dispersion in x. A value of y=2
is used here, for which D,~0.58 and D,=0.20.

a. Continental cloud

Figs. 10-12 show how the distribution of liquid
water among the droplets, g(InR,!)=3x?»n(x,£), changes
with time, and how the 100th-largest drop grows. There
is little meaningful difference between predictions based

on the symmetric polynomials in Table 1 and Eq. (11)

200 . —er ; v .
- -3
ol N(to)=200cm |
//
o A12)
100 a g
~ 25
E | A i
2
£ o -
£
g sol- 4
o
L F |
- ]

=———Cyg (x¢y) +Co0(x2sy2) ;CmXoCzoxz
1 1 L \

L —l
0 3 3 9 2 15 18 - 21
t(sx10°2) -

T1G. 12. The radius of the 100th-largest droplet per cubic meter
of a typical continental cloud, as predicted by the actual collection
kernel K(x,y) in (2) and as predicted by various polynomials
approximating K. Vertical strokes on graphs denote the time when
a change is made from one version of a polynomial to the next.
Braces show period of validity of results (short-dashed lines)
obtained using the indicated polynomials. These results are here
virtually identical to those obtained using (11) and (12).

and on their slightly better counterparts in Table 2
and Eq. (12). There is a significant difference, which
is now discussed, between the predictions based on the
linear polynomials and those containing an xy term
and the predictions based on (11), (12) and the poly-
mials having x? terms. .

The linear polynomials and those containing xy
predict a general collapse of the distribution into a
smaller number of larger droplets. This occurs because
these polynomials are 10-20 times too large at just
those radii (~10 um) where most cloud droplets are
initially located (cf. Figs. 5, 7 and 10). Following the
initial collapse, the distribution moves to the right and
for some time maintains a tail extending beyond that
of the actual distribution (see Fig. 12). Eventually,
however, the predicted kernel for the droplets in the
tail becomes smaller than the actual kernel (see Figs.
5 and 7), their growth rate is slowed compared to the
droplets in the tail of the actual distribution, and these
droplets become as large.

N(to) = 50cm™3
25 t =300s *
Initial distribution

T 20F (1), Cyg x+Cqo x2
3 20 K (xy) 10%+C20 2 1
o (12), Cip {x+¥) + C g (x4ey?)
L .
T 18- B(x+y)+Cxy Byx+Cxy
3
~
by
£
g 10 J
2
-] N

o5f N\ .

g \}(B(x y)
N Byx
_ b
%%

R(pm)

Fic. 13. Liquid water distribution at 300 sec in a typical mari-
time cloud, as predicted by the actual collection kernel K(x,y)
in (2) and as predicted by various polynomials approximating K.
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Fic. 14. As in Fig. 13 except at 900 sec.

The polynomials containing #? and the approxima-
tions in (11) and (12), on the other hand, predict a
liquid water distribution remarkably similar to the
actual distribution. This can be attributed to the much
better approximation to K in domain I where all the
droplets initially lie. The development of the distribu-
tion is thus not biased by an initial collapse and instead
proceeds in the expected manner. The initial peak in
the distribution slowly decreases, a tail is formed
toward the larger sizes, and there is only a few minutes’
difference in the time needed for Ryo(f) to equal 100 um,
the size of a fine drizzle droplet. These similarities
exist even though there is a 100-1509, error in the
approximations in domain I and a 40-609%, error for
larger droplets. A breakdown of K (x,y) into linear and
quadratic parts apparently retains most of the physics
originally contained in the collision efficiencies and
terminal velocities.

400 T S ER— | T ¥ LI
L N(g)=50cm=3 K(x,y)
’ (12)
| // (11)
/// ,B(x+y)+Cxy
"E‘ / o ABlxey)
3 // A=Byx+Cxy
5 100k Cotxey) Syt S g y
8 L- Cyox+C20x? // /'//
5
1 e i 1 1
5 8 10 12 4
t(sx1072)

Fic. 15. The radius of the 100th-largest droplet per cubic
meter of a typical maritime cloud. Legend is otherwise identical
to that in Fig. 12,

b. Maritime cloud

Fig. 13 shows, for this cloud and for the linear
polynomials and those containing xy, a smaller relative
collapse of the spectrum. This is expected because,
first, there are now fewer droplets initially, thus fewer
collection events, and second, the droplets that do
exist initially are located around 18 um, where the
polynomials are less in error (see Figs. 5 and 7).

As in the continental cloud there is a better corre-
spondence between the actual distribution and that
predicted by the polynomials in (11) and (12). The
second maximum in g(InR) noted by Berry (1967)
appears for the approximating polynomials as well
(Fig. 14) and the 100th-largest drop takes only 10-15%,
longer to reach any given size (Fig. 15). Once again,
an x? (small collector droplet) and « (large collector
droplet) dependence in K describes its essential features.

7. Conclusions

Numerical solutions to the droplet collection equa-
tion, using certain polynomial approximations to the
gravitational collection kernel, have been examined to
learn whether they usefully describe the evolution of a
cloud droplet distribution. The results for typical con-
tinental and maritime clouds (Figs. 10-15) show that
the distribution is closely described if the actual kernel
K (x,y) is replaced by

9.44 X 10° (x2-+-9?),
5.78 X 10%(x+9),
[see Eq. (11) and Fig. 9] or by
1.10X 1002, R< S0 um
6.33X10%, R>50pum

[see Eq. (12)]. R is the radius of the larger droplet, x
is its volume in cubic centimeters, and v is the volume
of the smaller droplet.

R<S0 um
R>50 um
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From the standpoint of including droplet collection
in multi-dimensional cloud models, an analytic solution
to the collection equation is desirable. An attempt
should be made to find such solutions based upon
either of the above approximations. If these cannot be
found because of the piecewise nature of the approxi-
mations, then solutions based on the portions for
R<50 um still would describe the first few hundred
seconds of droplet growth. A comparatively poor de-
scription of the droplet distribution comes from the
most physically realistic analytic solution presently
existing, ie., based on the kernel approximation

B(x+y)+Cxy.
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