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Closure models.

Correlation terms in Reynolds equations:

~pou’t u'ty

This means that a closed set of N-S equations is converted to the open set and
additional equations or assumptions are necessary. In the other word we need
Turbulence Closure Models, TCM's.

Turbulence Closure Models (G 2.4)

The equations for ensemble averaged quantities involve the divergence of the eddy correla-
tions, which arise from averaging the nonlinear advection terms. Similarly, prognostic equations
for the ensemble averaged second-order correlations include averages of triple correlations,
etc...so this approach does not lead to a closed set of equations. In a turbulence closure model
(TCM). higher-order correlations are parameterized in terms of lower-order correlations to close
the system. In a first-order TCM, all second-order correlations are parameterized in terms of the
mean fields. In a second-order TCM, st and second order moments are prognosed. but third-order
correlations are parameterized in terms of them. TCMs of up through third order have been used.
Third order TCMs can do a fairly realistic job of predicting the profiles of mean fields and even
second-order moments, but are quite complicated and computationally intensive.



1st order closures.
Example: Prandtl model (1925)

Prandtl introduced idealized turbulent eddies, structures that carry properties of the fluid
with velocity V on a certain idealized distance named mixing length dz.
After this, the fluid parcel carried in the mixing event is homogenized with the environment

. At any location, half the time there 1s an updraft with w,'= ¥ carrying fluid upward from an
average height = - 8z/2, and the other half of the time there is a downdraft with w ;"= -V carrying
fluid downward from an average height z + 6z/2. Consider the corresponding vertical flux of some
advected quantity a. In updrafts.

a,’=a(z-0z2) - a(2)
If we assume that a varies roughly linearly between = - 6z/2 and z, then

o0zda
(1. 55 = —

" 2dz
Similarly, in downdratts,
0zda

o =(c +82)-a(0) = £



Hence, taking the ensemble average,

, da
(w,a, +wya;)= -KSF .

where K, = V06z/2

=

o

I
D | —

Thus the eddy flux of @ 1s always down the mean gradient, and acts just like diffusion with an eddy
diffusivity K. For typical ABL scales '=1m 51, 8z =1km., and mixing length theory would
predict K = 500 m’s™!. Most first order turbulence closure models assume that turbulence acts as
an eddy diffusivity, and try to relate 7 and 0z to the profiles of velocity and static stability: more
on how this 1s done later when we talk about parameterization.

Higher order closures.

Progn. Eq. for: | Moment Equation No. Egs. | No. Unknowns
T, First o | 2 3 6
il Firt | 249 | _ 2wy 6 10
W, First | 2ot — | 2t | g 15
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Flow close to the surface. Monin-Obukhov theory.

Near a solid boundary. in the ‘surface layer’, vertical fluxes are transported primarily by eddies
with a lengthscale much smaller than in the center of the BL. A very successful similarity theory
1s based on dimensional reasoning (Monin and Obuhkov, 1954). It postulates that near any given
surface. the wind and thermodynamic profiles should be determined purely by the height z above
the surface (which scales the eddy size) and the surface fluxes which drive turbulence:

’ ’ & ] ] 3 - I-'.r}
1. Surface mom. flux u#'w’ (often expressed as friction velocity ws = (u'w ﬂjl )

2. Surface buoyancy flux By =w'b’ -
uf,

N kg(w'd)),
Obuhkov length L = U /kBg (positive for stable, negative for unstable BLs)

One can construct from these fluxes the

Here k£ = 0.4 1s the von Karman constant, whose physical significance we’ll discuss shortly. In

the ABL, a typical u+ might be 0.3 m sTanda typical range of buoyancy flux would be -3x1 0
a2 . . Z T . . . O .

m?s “(nighttime) to 1.5x10 2 m’s 3{1111(1(151}') (1. e. a virtual heat flux of -10 W m™ at night, 500

W m™ at midday). giving L = 200 m (nighttime) and -5 m (mdday).

Obukhov length related to the ratio of surface momentum flux 6
and surface buoyancy flux!



Logarithmic sublayer.
At height z. the characteristic eddy size. velocity, and buoyancy scale with z, w=, and B "u?.
If the buc-}{ ant acceleration acts over the eddy height. it would make a vertical velocity (z0b)"'~ =
(zBy/ w2, If 2 < < |L|. this buovyancy driven confribution to the vertical velocity 1s much smaller
than the 511&31‘-(1111 en inertial velocity scale u« , so buoyancy will not significantly affect the eddies.
In this case, the mean wind shear will depend only on 1« and z. so dimensionally

du/dz = us/kz (z<|L]) (1)
This can also be viewed in terms of mixing length theory. with eddy diffusion

o< (velocity)(length) = (us)(kz)
uw o =-K, duldz = s’ =kusz du/dz (equivalent to (1))

The von Karman constant i 1s the empirically determined constant of proportionality in (1). Inte-
grating. we get the logarithmic velocity profile law:

u(@he =k In(z/zg) (z <<|L) (2)

The constant of integration z; depends on the surface and is called the roughness length. It 1s
loosely related to the typical height of closely spaced surface obstacles. often called roughness el-
ements (e. g. water waves, trees, buildings, blades of grass). It depends on the distribution as well
as the height /i_ of roughness elements (see figure below), but as a rule of thumb.

™ 4 T

zg varles greatly depending on the surface, but a typical overall value for land surfaces 1s z5 = 0.1
m (see table on next page). In the rare circumstance that the surface 1s so smooth that the viscous
sublayer 1s deeper than roughness elements,

zo~ 0.1v/ux ~ 0.015 mm for w==0.1 m %
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Fig. 10.4 Comparison of the observed wind profiles in the neutral surface layer of day 43
of the Wangara Experiment with the log law [Eq. (10.6)] (solid lines). [Data from Clarke er
al. (1971).]



Wind speed increases
approximately logarithmically
with height. The variation from
a log-profile depends largely
on atmospheric stability.
Atmospheric stability refers to
the stratification of the air
near the surface. A stable
stratification will reduce
mixing (and surface stress),
and an unstable stratification
will increase mixing.

The following figure shows
the influence of air-sea
temperature contrasts on the
wind profile. In this case, the
wind is set equal to 6 m/s at a
height of 6 m. The air-sea
moisture difference is set a 3
g/kg over the same height
range.

z (m)

Mean Height Above Sea Level,

The term on the left hand side of the equal sign is the wind speed relative to the
surface speed (e.g., the surface current) as a function of height (z). The friction
velocity (u*) is the square-root of the kinematic stress, and k is a constant. The
term in blue is the logarithmic term, and the term in green is the modification
due to atmospheric stratification (L). When the atmospheric stratification is
neutral (z/L = 0), there is no stratification, and the stability term (j) is zero. The
friction velocity (u*) and roughness length (z ) are functions of wind speed,

atmospheric stratification, and sea state.
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Height [rm]

LES of a convective BL above sea surface: mean profiles of horizontal velocity
components and profiles in the successive columns of model domain.
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Cabauw tower and sodar measurements
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Fig.4 Comparison of wind data measured by
the SODAR and a meteorology tower
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Another sodar.. METEK DSDR3x7

range: 60 - 1300 m

height res.: 20 m

frequency: 1500-2200 Hz
height: 4 m

weight: 8 t

length: 10 m

The instrument delivers vertical
profiles of

- acoustic backscatter intensity

- wind speed

- wind direction

- turbulence (vertical component,
sigma w)

every 10 to 30 min. 12
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Fic. 3. Mean observed and simulated vertical wind profile
at Cabauw.

| | Index | 40m | 80m | 140m | 200m |
BLK | RMSE (m/s) | 1.95 | 2.31 2.7 2.94
BIAS (m/s) | 0.07 | 047 | -0.62 | -0.59
ETA | RMSE (m/s) | 1.97 | 2.44 | 2.97 | 3.18
BIAS (m/s) | 0.07 [ -0.14 | -0.10 [ 0.09
MRF | RMSE (m/s) | 1.94 | 2.47 2.96 3.10
BIAS (m/s) | 0.07 | -0.06 | -0.19 | -0.29

TABLE 3. Root Mean Squared Error and Bias for the
considered PBL schemes for simulation in Cabauw.
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Fia. 2. Time series of the observed and simulated wind
speed at 140 m for Cabauw. Figures refer to simulations
using MRF (top), ETA (middle) and Blackadar (bottom)
PBL schemes.

Cabauw BL data compared to
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Convective BL.: typical records from the ultrasonic thermoanemometer ~10m above ground
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Garratt

Surface
roughness

a/h,
ry
Observed
0.1 range B f
o
1 i
A . .III“ D
C | I‘l' - |
F | I E
Y “I'
(.01 n |
|
0.00] ] ] | I | | | I
0.01 0.1 )

Ay

Fig. 4.1 Variation of zq/h. with element density, based on the results of Kutzbach (1961)
Lettau (1969) and Wooding et al. (1973), represented by the shaded area and solid curve
Some specific atmospheric data are also shown as follows: A and B, trees: C and D
wheat; E, pine forest; F, parallel flow in a vineyard; G, normal flow in a vineyard
Analogous wind-tunnel data are described in Seginer (1974). From Garratt (1977b).

Dependence of roughness length on density A of roughness elements.
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Engineers and logarithmic wind profile: Power Law approximation

The Wind Profile Power Law is a relationship between the wind speeds at one height, and
those at another. The power law is often used in Wind Power assessments where wind speeds
at the height of a turbine (>~ 50 meters) must be estimated from near surface wind
observations (~10 meters), or where wind speed data at various heights must be adjusted to a
standard height prior to use. Wind profiles are generated and used in a good many
atmospheric pollution dispersion models.

The wind profile of the atmospheric boundary layer (surface to around 2000 meters) is
generally logarithmic in nature and is best approximated using the log wind profile equation
that accounts for surface roughness and atmospheric stability. The wind profile power law
relationship is often used as a substitute for the log wind profile when surface roughness or
stability information is not available.

The wind profile power law relationship is:
ul/u=(z/z)"

where u is the wind speed (in meters per second) at height z (in meters), and u_is the known
wind speed at a reference height z . The exponent (a) is an empirically derived coefficient that

varies dependent upon the stability of the atmosphere. For neutral stability conditions, a is
approximately 1/7th, or 0.143.

17



In order to estimate the wind speed at a certain height (x), the relationship would be
rearranged to:

u=u*(z/z )a
X r X r
The 1/7 value for a is commonly assumed to be constant in wind resource assessments,
because the differences between the two levels are not usually so great as to introduce

substantial errors into the estimates (usually < 50 m).

However, when a constant exponent is used, it does not account for the roughness of the
surface, the displacement of calm winds from the surface due to the presence of
obstacles (i.e., zero-plane displacement), or the stability of the atmosphere.

In places where trees or structures impede the near-surface wind, the use of a constant
1/7th exponent may yield quite erroneous estimates, and the log wind profile is preferred.
Even under neutral stability conditions, an exponent of 0.11 is more appropriate over
open water (e.g., for offshore wind farms), than 0.143, which is more applicable over
open land surfaces.

18



Monin- Obukhov similarity theory and universal functions

Let's recall definition of Obukhov length:

I E—— - - - = r l'l
1. Surface mom. flux u"w’; (often expressed as friction velocity u. = (v w’y) L 2)

2. Surface buoyancy flux By = w'b’g

One can construct from these fluxes the

Obuhkov length L = -u. 3;’}(Bﬂ (positive for stable, negative for unstable BLs)

Based on the scaling arguments of last lecture, Monin and Obuhkov (1954) suggested that the
vertical variation of mean flow and turbulence characteristics in the surface layer should depend
only on the surface momentum flux as measured by friction velocity u+, the buoyancy flux By, and

the height z. One can form a single nondimensional combination of these, which is traditionally
chosen as the stability parameter

(=71

The logarithmic scaling regime of last time corresponds to (<< 1.

19



“m” - momentum

Thus, within the surface layer, we must have _ - “h” - “heat”
(kz/u)(Qudz) = ¢,,(C) (1)
(kz/8-)(08/02) = p(5) (2)

where ¢,.(C) and ¢(C) are universal similarity functions which relate the fluxes of momentum
and 6 (i. e. sensible heat) to their mean gradients. Other adiabatically conserved scalars should be-

have similarly to © since the transport is associated with eddies which are too large to be affected

by molecular diffusion or viscosity. To agree with the log layer scaling, ¢,,(C) and ¢4(C) should
approach 1 for small C.

We can express (1) and (2) in other equivalent forms. First, we can regard them as defining sur-
face layer eddy viscosities:

K,=-uw /Qudz = ull(0,,(0) u/ks) = kuez ! &,,(C)
Ky =-w'0"/(00/02) = us0:+/(0,(C) 0+/k2) = kuz ! 04(C)
By analogy to the molecular Prandtl number, the turbulent Prandtl number is their ratio:

PI'E« = Km*’{K}; = ‘bﬁ(g qum(g)

20



Brunt-Vaisala frequency

Another commonly used form of the similarity functions is to measure stability with gradient Ri-
chardson number Ri instead of C. Recalling that N = -db/dz, and again noting that the surface layer
is thin, so vertical fluxes do not vary significantly with height within it, Ri is related to { as follows:

Ri = (db/dz) /(du/dz)?
= (Wb /Ky)/ (0w /K,)°
= (Bodp(Q) Tkus2) / (-2, () kus D)
= Lo,

Given expressions for ¢,,(C) and ¢, (C), we can write C and hence the similarity functions and eddy
diffusivities in terms of Ri. The corresponding formulas for dependence of eddy diffusivity on Ri

(stability) are often used by modellers even outside the surface layer, with the neutral K, and K,
estimated as the product of an appropriate velocity scale and lengthscale.

21



Field Experiments

The universal functions must be determined empirically. In the 1950-60s, several field exper-
iments were conducted for this purpose over regions of flat, homogeneous ground with low, ho-
mogeneous roughness elements, t:u]mmatmg in the 1968 Kansas experiment. This used a 32 m
instrumented tower in the middle of a 1 mi’ field of wheat stubble. Businger et al. (1971, JAS, 28,
181-189) documented the relations below, which are still accepted:

O = (1- ylg)‘lﬂl, for -2 < (<0 (unstable)
m
1+ BC, for 0<{<1 (stable)

) Pr (1 - ng)_lfz, for -2 <{ <0 (unstable)
Pr  + PG, for 0<C<1 (stable)

The values of the constants determined by the Kansas experiment were

Pry=0.74, =47, y; =15, v,=9

22
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The quality of the fits to observations are shown on the next page. Other experiments have yielded
somewhat different values of the constants (Garratt, Appendix 4, Table A5), so we will follow Gar-
ratt (p. 52) and Dyer (1974, Bound-Layer Meteor., 7, 363-372) and assume:

Proy=1, B=5, y= 7, =16

In neutral or stable stratification, this implies ¢, = ¢y, i. e. pressure perturbations do not affect the
eddy transport of momentum relative to scalars such as heat, and the turbulent Prandtl number is
1. In unstable stratification, the eddy diffusivity for scalars is more than for momentum.

Solving these relations for Ri,

Ri, for -2<Ri<0 (unstable)
5=1 Ri

_ - < Ri
TTERT forr 0<Ri<0.2 (stable)

Limiting cases (Garratt, p. 50)
(i) Neutral limit. ¢, ¢, — 1 as { — 0 as expected, recovering log-layer scaling for z << |L|.

(ii) Stable limit. Expect eddy size to depend on L rather than z (z -less scaling), since our scaling
analysis of last time suggests that stable buoyancy forces tend to suppress eddies with a scale
larger than L. This implies that the eddy diffusivity

K, = kusz/b,, =< (velocity)(length) o< sl = ¢, ~2/L=C

and similarly for K. The empirical formulas imply K, ~ BC for large C, which is consistent
with this limit. Hence they are usually assumed to apply for all positive C.

27



(iii) Unstable limit. Convection replaces shear as the main source of eddy energy, so we expect
the eddy velocity to scale with the buoyancy flux By and not the friction velocity. We still
assume that the eddy size is limited by the distance zto the boundary. In this ‘free convective
scaling’, the eddy velocity scale is uy= (By2) !> and the eddy viscosity should go as

KIH :ku'sz{qun o Uf‘Z = ¢’ o< U /”f o (—E;XL)_I";S = (_g)‘l"'?*

m

A similar argument applies to eddy diffusivity for scalars K. The empirical relations go as
-1/ -1/ .

(-0)V2 for scalars and (-{)* for momenta, but reliable measurements only extend out to {

= -2. Free convective scaling may be physically realized, but only at higher C.

* Aryall.h
14

0 -08 -06 -04  -0p 0 02
Ri

Eddy viscosity and diffusivity as functions of stability, measured by Ri
29



Wind and thermodynamic profiles
(ke/u) @) = 0, ()

(k2B @802 = 0,()

The similarity relations can be integrated with respect to height to get:

W = K [In(zz) - v, (1)]

(6)—0)0: = k! [In(z/zy) - yy(27L)] (and similarly for other scalars)
where if x = (1 - v,{) 174

Val0 = 710,01/

1+,!.:'2 1 +

x\2 -1 T
_ 111( 5 )( > ) — 2tan X+§, for -2 < <0 (unstable)

B¢, for 0<{ (stable)

Wm(g) = J; [1 - ¢’h( g)] ({C.‘/g

2

= 2111(1 +2X ) for —2<{ <0 (unstable)

—BC, for 0<{ (stable)
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Fig. 3.5 Three wind profiles from the Kansas field data (Izumi, 1971) plotted in
normalized form at three values of the gradient Ri (z = 5.66 m). Both normalized and
absolute heights are shown, whilst the magnitude of the horizontal arrows indicates the
effect of buoyancy on the wind relative to the neutral profile (see Eq. 3.34).
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Wind profiles in stable, neutral, and unstable conditions are shown in the figure below. Low-level
wind and shear are reduced compared to the log profile in unstable conditions, when K, is larger.
From these,we derive bulk aerodynamic coefficients which apply in non-neutral conditions:
2 2
. k k

Cp= . Cy=
v [In(z/7y) - wm(sz)]z. " [In(z/zpq) =y, (2/ L)][In(z/ zg) =y, (2/L)]

(3)

These decrease considerably in stable conditions (see figure on next page). In observational anal-
yses and numerical models, (3) and the formula for L are solved simultaneously to find surface heat
and momentum fluxes from the values of v and 8, - 8 at the measurement or lowest grid-level z

Lo

Co/Coy

Ci/Cim

1.5

-1 —0.5 0 0.5 l
L

Fig. 3.7 Values of (a) Cp/Cpn and (b) Cy/Cu~ as functions of z/L for two values of
z/z¢ as indicated. In (&), the solid curves have zy = z7, and the pecked curves have
zo/z7 = 7.4 (see Chapter 4).
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