Dynamics of the Atmosphere and the Ocean
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Recap

The vorticity equation:
Dot =+
D =-C ax  dy

owdv  Jdw du +1 dp dp  dp dp

dx dz Oy 0z pr \dx dy dyox

The above states that the rate of change of the absolute vorticity following the motion
is given by the sum of the three terms on the right, called the divergence term, the
tilting or twisting term, and the solenoidal term, respectively.
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Recap

The vorticity equation:
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Solenoidal (baroclinic) term: . (“ . ’”) 4L ("ﬂ?p _dpdp
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Another form: % (Vp xVp) -k

Vorticity generated due to intersection of density and pressure surfaces (baroclinic
environment). Vorticity is generated when density and pressure gradients are not
aligned. It causes stronger movement in a regions where gradients are larger and
weaker movement in regions where gradients are (relatively) smaller, resulting in
spin (vorticity).

Prof. Jin-Yi Yu
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Solenoidal term: _ C(dwdv dwaw) [ 1 (dpdp dpip
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is just the microscopic equivalent of the solenoidal term in the circulation theorem.

To explain recall definition of circulation about a closed contour in a fluid as the line
integral evaluated along the contour of the component of the velocity vector that is
locally tangent to the contour:

CE%U'JI=¢‘|U|CDS o dl

where I(s) is a position vector extending
from the origin to the point s(x, y, z) on
the contour C, and dl represents the limit of

ol = I(s +0s)-I(s) as 6s — 0.

By convention the circulation is taken to be
positive if C > 0 for counterclockwise d
integration around the contour.
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That circulation is a measure of rotation is demonstrated readily by considering a
circular ring of fluid of radius R in solid-body rotation at angular velocity about the
z axis. In this case, U=OQxR, where R is the distance from the axis of rotation to the
ring of fluid. Thus the circulation about the ring is given by

2
Cz%U-dl:f QR?*d) = 2Qn R*?
0

In this case the circulation is just 21T times the angular momentum of the fluid ring.

Note also that C/(1TR?)=2Q so that the circulation divided by the area enclosed by
the loop is just twice the angular speed of rotation of the ring.

Unlike angular momentum or angular velocity, circulation can be computed without
reference to an axis of rotation.

The circulation theorem is obtained by taking the line integral of Newton’s
second law for a closed chain of fluid particles. In the absolute coordinate
system the result (neglecting viscous forces; aparent forces vanish) is
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In the above — VO =g = —gk.

The integrand on the left-hand side can be rewritten in the form:
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Substituting to the equation on the top and using the fact that the line integral about a

closed loop of a perfect differential is zero, so that
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In the above — VO =g = —gk.

The integrand on the left-hand side can be rewritten in the form:
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Substituting to the equation on the top and using the fact that the line integral about a

closed loop of a perfect differential is zero, so that
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One finally gets the circulation theorem in a form: 1 (3p ap  Ap 3p)
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The above was obtained using % Ug «dU, = E% d(Ug » Uy) =0

In the circulation theorem the rightmost term is the solenoidal one.
We may now apply Stokes’ theorem to the solenoidal term to get:

—%udpz—%m?p-dl=—ff‘F}{{ﬂ?;})-kd,d
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where A is the horizontal area bounded by the curve .
Applying the vector identity V x (aVp) = Va x Vp, the equation becomes:

—%wdp:—// (Va x Vp) «kd A
A

However, since a=1/p the solenoidal term ih the vorticity equation can be written

da dp  da dp
—_ — = — — )| == (Vax Vp)ek
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and the solenoidal term in the vorticity equation is just the limit of the solenoidal
term in the circulation theorem divided by the area when the area goes to zero.



Discussion of circulation theorem.

Consider the circulation theorem in the form:

DCa _ D Ly, ear= jﬁ—ld
Dt Dt ¢ N p ap

For meteorological analysis, it is more convenient to work with the relative circulation
C rather than the absolute circulation, as a portion of the absolute circulation, Ce , is
due to the rotation of the earth about its axis.

To compute Ce , we apply Stokes’ theorem to the vector Ue , where Ue = Qx r is the
velocity of the earth at the position r:

CE:%UE-H’I:/f(_V:x:Ui,)-na'A
A

Here n is normal to the area A.

Using vector identity:
VxU,=Vx(2x1r)=Vx(2xR)=2V R =2Q

one obtains: ‘
(VxU,) en=22sn¢ = f



Hence, the circulation in the horizontal plane due to the rotation of the earth is
Ce = 2Q<sin > A = 2QA¢

where <sin ¢> denotes an average over the area
element A and Ae is the projection of A

in the equatorial plane as illustrated.

Thus, the relative circulation may be expressed as

C=Ca_Ce=Ca_2AQe

Ae

Differentiating following the motion (D/Dt) we obtain the Bjerknes circulation theorem:

D, U, V,edl
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For a barotropic fluid, the above can be integrated following the motion from an initial
state (designated by subscript 1) to a final state (designated by subscript 2), yielding the
circulation change:

C2 — C1=-2Q(A2 <sin ¢2> — A1 <sin @1>)



In a baroclinic fluid, circulation may be generated by the pressure-density
solenoid term. This process can be illustrated effectively by considering the
development of a sea breeze circulation, as shown:
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Substituting the ideal gas law into circulation theorem we obtain

DCy
Dt

Dca Po - —
=RIn|— ) (T,—T7T1) =0
Dt P

=—¢RTd1np




Vorticity equation — practical application
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A vorticity budget for theoretical and convectively coupled
equatorial Rossby waves: Dynamical propagation and
growth mechanisms

Dynamical propagation and growth mechanisms for
convectively coupled equatorial Kelvin waves over
the Indian Ocean

Adrian J. Matthews Adrian J. Matthews

Vorticity equation can be used to study propagation and growth/decay mechanisms of
real atmospheric features.
2.1 | Vorticity budget

The vorticity equation for flow on a quasi-horizontal pres-
sure level in Cartesian coordinates can be written as

D du av ac ¢ ac o
5 5 5 5
—(C + = — -} — 4+ — = —Uu—=-v—-=—-—w— —{D -
SN ==+ ) ( - ay) - (D-m
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ax 0z dy 9z p2 \dx dy dyox relative vorticity
_ﬂlr — (@@ — @%)
. , k ox dp dy ap / ’
advection of tilting/twisting
planetary vorticity

Applicable to indealized (analytical) models, modeling data (weather forecasts),
observations, reanalyses...
Process-level diagnostics in a dynamical framework.



DV
Coming back to vorticity.... N + fkxV=-V,d

Vorticity equation in isobaric coordinates can be derived in vector form by operating
on the momentum equation with the vector operator

k - Vx, where V now indicates the horizontal gradient on a surface of constant pressure.
and use the vector identity

(V-?)V:?(V;V)+§kxv C=k-(VxV)

After these operations one obtains:

vV VeV aV
=V + @) -+ HkxV—w—
a1 2 ap

We now apply the operator k - Vx to the above..

Using the facts that for any scalar A, V. x VA = 0 and for any vectors a, b,
Vx(@axb)=(V-b)a-(a-V)b-(V-a)b+(b-V)a

we can eliminate the first term on the right and simplify the second term so that
the i

A

A 0 :
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There is no solenoidal term in pressure coordinates!
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Scale analysis of the vorticity equation . (aa duw a) ar (ap op  op ap)
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We simplify the equations of motion for synoptic-scale motions by evaluating the order of
magnitude of various terms.

The same technique can also be applied to the vorticity equation. Characteristic scales for
the field variables (in the atmosphere!!l) are as follows:

U~ 10ms™! horizontal scale
W~ 1lcms™! vertical scale
L~ 10°m length scale
H~ 10*m depth scale
6p ~ 10hPa horizontal pressure scale
p~ lkgm™ mean density
dplp ~ 1072 fractional density fluctuation
LIU ~ 10° s time scale
fo~ 10"%s7! Coriolis parameter
B~ 10"Hm1s! “beta” parameter

Using these scales to evaluate the magnitude of the terms in vorticity equation, we note

that
d ad U : . _
p= ittt g Dm0 ¢/foSU/(foL)=Ro~ 107"



For midlatitude synoptic-scale systems, the relative vorticity is often small (order Rossby
number) compared to the planetary vorticity and { may be neglected compared to f in the

divergence term in the vorticity equation:
p ou N dv
ox 0y

€+ 1) ou N ov
ox  dy

This approximation does not apply near the center of intense cyclonic storms. In such

systems | /f | ~ 1, and the relative vorticity should be retained. Where else?

&

The magnitudes of the various terms in the vorticity equation can now be estimated as:

a  ac A U? 0 o p p .
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.  10—10 =2
”E Up~107"s The inequality is used in the last three terms because
[ du v U o ,  thetwo parts of the expression might partially cancel
fl—+ — )| <= ~107s? :
ax dy) ™~ L ‘ and the actual magnitude would be less than
dwdv Jwdu\ _ WU 4 indicated.
(Q@ - @E) ~HL i In fact, this must be the case for the divergence term
L (pdp _dpdp\ _ dpdp o becau§e if au/a'x and ov/dy were not nearly equal and
p2 \ax dy adyax) ™~ p2L2 i opposite, the divergence term would be an order of

magnitude greater than any other term and the
equation could not be satisfied.



Scale analysis of the vorticity equation indicates that synoptic-scale motions must be
quasi-nondivergent.
The divergence term will be small enough to be balanced by the vorticity advection terms

only if
(Bu N 31})
ox  dy

so that the horizontal divergence must be small compared to the vorticity in synoptic-scale
systems. From this and the definition of the Rossby number, we see that

(234

< 1070571

The ratio of the horizontal divergence to the relative vorticity is the same magnitude as the
ratio of relative vorticity to planetary vorticity.



Retaining only the terms of order 10719 s72 in the vorticity equation yields the
approximate form valid for synoptic-scale motions:

D&+ 1) .(BH dU) Dn =i+ui+vi
= —J\ 7t Dt~ dx 9
Dt PP 3y S Y

The above equation states that the change of absolute vorticity following the horizontal
motion on the synoptic scale is given approximately by the concentration/dilution of
planetary vorticity caused by the convergence/divergence of the horizontal flow.

It is not accurate in intense cyclonic storms. For these the relative vorticity should be
retained in the divergence term:

D&+ du v
D gy (22

In the above the concentration or dilution of absolute vorticity that leads to changes in
absolute vorticity following the motion.

The approximate forms above do not remain valid in the vicinity of atmospheric fronts.
The horizontal scale of variation in frontal zones is only ~100 km, and the vertical velocity
scaleis ~10cm s™.

For these scales, vertical advection, tilting, and solenoidal terms all may become as large
as the divergence term.



VORTICITY IN BAROTROPIC FLUIDS

For a homogeneous incompressible fluid, the continuity equation simplifies
because V - U = 0 or, in Cartesian coordinates to:

3u+31} B ow
ax dy) 0z

so that the vorticity equation may be written as:

D&+ f) L fow
Dt _(§+f)(az)

We know that in a barotropic fluid the geostrophic wind is independent of height.
Letting the vorticity be approximated by the geostrophic vorticity (g and the wind by
the geostrophic wind (ug , vg ), we can integrate vertically from z1 to z2 to get

hDh (gg"l' f)
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Knowing that
w= Dz/Dtand h = h(x, y,t),

Dz Dz Dy h
w(zp)—w(z1) = — -

Dt Dt Dt

we get

Dyln(¢e+ f) Dplnh

Dt Dt
Dy, Cg'l' f —0
Dt h N

The last one is the barortopic potential vorticity equation, derived in the other way in
the previous lecture.



The Barotropic Vorticity Equation

If the flow is purely horizontal (w = 0), as is the case for barotropic flow in a fluid of
constant depth, the divergence term vanishes and we obtain the barotropic vorticity

equation: D, (Cg n f)
Dt

=0

Indicating that absolute vorticity is conserved following the horizontal motion.

More generally, absolute vorticity is conserved for any fluid layer in which the
divergence of the horizontal wind vanishes, without the requirement that the flow be

geostrophic.

For horizontal motion that is nondivergent (du/ox + ov/dy = 0), the flow field can be
represented by a streamfunction g (x, y) defined so that the velocity components are
given as u = —oy/ay, v = +oyp/ox. The vorticity is then given by

¢ =9v/dx — du/dy = 3%y /dx> + 3°v /3y’ = V¢

The velocity field and the vorticity can both be represented in terms of the
variation of the single scalar field g (x, y), and barotropic vorticity equation can be
written as a prognostic equation for vorticity in the form:
Vy =k x Vy
d oo 5 .
AR —Vy+V (V tp+f)



%vzw =V, -V (V2y + f)

In the above Vy = k x Vy is a nondivergent horizontal wind. The equation states that the
local tendency of relative vorticity is given by the advection of absolute vorticity.

This equation can be solved numerically to predict the evolution of the
streamfunction, and hence of the vorticity and wind field. In fact this was the firs numerical
weather forecast!!

You can get the code of this forecast from: http://mathsci.ucd.ie/~plynch/eniac/ and run it on
your cell phone.

Considering that the flow in the mid-troposphere is often nearly nondivergent on the
synoptic scale, the above equation provides a surprisingly good model for short-term
forecasts of the synoptic-scale 500-hPa flow field.
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