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The vorticity equation:

The above states that the rate of change of the absolute vorticity following the motion 
is given by the sum of the three terms on the right, called the divergence term, the 
tilting or twisting term, and the solenoidal term, respectively.
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The vorticity equation:
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Solenoidal (baroclinic) term:

Another form:  
1

𝜌2
∇𝜌 × ∇𝑝 ∙ 𝒌

Vorticity generated due to intersection of density and pressure surfaces (baroclinic 
environment). Vorticity is generated when density and pressure gradients are not 
aligned. It causes stronger movement in a regions where gradients are larger and 
weaker movement in regions where gradients are (relatively) smaller, resulting in 
spin (vorticity). 
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Solenoidal term:

is just the microscopic equivalent of the solenoidal term in the circulation theorem.

To explain recall definition of circulation about a closed contour in a fluid as the line 
integral evaluated along the contour of the component of the velocity vector that is 
locally tangent to the contour:

where l(s) is a position vector extending
from the origin to the point s(x, y, z) on
the contour C, and dl represents the limit of

δl = l(s +δs)−l(s) as δs → 0.

By convention the circulation is taken to be
positive if C > 0 for counterclockwise
integration around the contour.



That circulation is a measure of rotation is demonstrated readily by considering a 
circular ring of fluid of radius R in solid-body rotation at angular velocity about the 

z axis. In this case, U=Ω×R, where R is the distance from the axis of rotation to the 

ring of fluid. Thus the circulation about the ring is given by

In this case the circulation is just 2π times the angular momentum of the fluid ring.

Note also  that C/(πR2)=2Ω so that the circulation divided by the area enclosed by 

the loop is just twice the angular speed of rotation of the ring.
Unlike angular momentum or angular velocity, circulation can be computed without 
reference to an axis of rotation.

The circulation theorem is obtained by taking the line integral of Newton’s
second law for a closed chain of fluid particles. In the absolute coordinate 
system the result (neglecting viscous forces; aparent forces vanish) is



In the above  – ∇Φ = g = −gk.

The integrand on the left-hand side can be rewritten in the form:

Substituting to the equation on the top and using the fact that the line integral about a 
closed loop of a perfect differential is zero, so that
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The integrand on the left-hand side can be rewritten in the form:

Substituting to the equation on the top and using the fact that the line integral about a 
closed loop of a perfect differential is zero, so that



One finally gets the circulation theorem in a form:

The above was obtained using

In the circulation theorem the rightmost term is the solenoidal one.
We may now apply Stokes’ theorem to the solenoidal term to get:

where A is the horizontal area bounded by the curve l.

Applying the vector identity ∇ × (α∇p) ≡ ∇α × ∇p, the equation becomes:

However, since α=1/ρ the solenoidal term in the vorticity equation can be written

and  the solenoidal term in the vorticity equation is just the limit of the solenoidal
term in the circulation theorem divided by the area when the area goes to zero.



Discussion of  circulation theorem.

Consider the circulation theorem in the form:

For meteorological analysis, it is more convenient to work with the relative circulation 
C rather than the absolute circulation, as a portion of the absolute circulation, Ce , is 
due to the rotation of the earth about its axis.

To compute Ce , we apply Stokes’ theorem to the vector Ue , where Ue = Ω× r is the 

velocity of the earth at the position r:

Here n is normal to the area A.
Using vector identity:

one obtains:



Hence, the circulation in the horizontal plane due to the rotation of the earth is

Ce = 2Ω<sin φ> A = 2ΩAe

where <sin φ> denotes an average over the area
element A and Ae is the projection of A
in the equatorial plane as illustrated.
Thus, the relative circulation may be expressed as

C = Ca − Ce = Ca − 2AΩe

Differentiating following the motion (D/Dt) we obtain the Bjerknes circulation theorem:

For a barotropic fluid, the above  can be integrated following the motion from an initial 
state (designated by subscript 1) to a final state (designated by subscript 2), yielding the 
circulation change:

C2 − C1 = −2Ω(A2 <sin φ2> − A1 <sin φ1> )



In a baroclinic fluid, circulation may be generated by the pressure-density 
solenoid term. This process can be illustrated effectively by considering the 
development of a sea breeze circulation, as shown:

Substituting the ideal gas law into circulation theorem  we obtain



Vorticity equation – practical application

Vorticity equation can be used to study propagation and growth/decay mechanisms of 
real atmospheric features.

Applicable to indealized (analytical) models, modeling data (weather forecasts), 
observations, reanalyses…
Process-level diagnostics in a dynamical framework.



Coming back to vorticity....

Vorticity equation in isobaric coordinates can be derived in vector form by operating 
on the momentum equation with the vector operator

k · ∇×, where ∇ now indicates the horizontal gradient on a surface of constant pressure. 

and use the vector identity

After these operations one obtains:

We now apply the operator k · ∇× to the above..

Using the facts that for any scalar A, ∇ × ∇A = 0 and for any vectors a, b,

∇ × (a × b) = (∇ · b) a − (a · ∇) b − (∇ · a) b + (b · ∇) a

we can eliminate the first term on the right and simplify the second term so that
the resulting vorticity equation becomes:

There is no solenoidal term in pressure coordinates!

ζ = k · (∇ × V)



Scale analysis of the vorticity equation

We simplify the equations of motion for synoptic-scale motions by evaluating the order of 
magnitude of various terms.

The same technique can also be applied to the vorticity equation. Characteristic scales for 
the field variables (in the atmosphere!!!) are as follows:

Using these scales to evaluate the magnitude of the terms in vorticity equation, we note 
that



For midlatitude synoptic-scale systems, the relative vorticity is often small (order Rossby 
number) compared to the planetary vorticity and ζ may be neglected compared to f in the 
divergence term in the vorticity equation:

This approximation does not apply near the center of intense cyclonic storms. In such 
systems |ζ /f | ∼ 1, and the relative vorticity should be retained. Where else?

The magnitudes of the various terms in the vorticity equation can now be estimated as:

The inequality is used in the last three terms because
the two parts of the expression might partially cancel 
and the actual magnitude would be less than 
indicated.
In fact, this must be the case for the divergence term
because if ∂u/∂x and ∂v/∂y were not nearly equal and 
opposite, the divergence term would be an order of 
magnitude greater than any other term and the 
equation could not be satisfied.



Scale analysis of the vorticity equation indicates that synoptic-scale motions must be 
quasi-nondivergent.
The divergence term will be small enough to be balanced by the vorticity advection terms 
only if

so that the horizontal divergence must be small compared to the vorticity in synoptic-scale 
systems. From this and the definition of the Rossby number, we see that

The ratio of the horizontal divergence to the relative vorticity is the same magnitude as the 
ratio of relative vorticity to planetary vorticity.



Retaining only the terms of order 10−10 s−2 in the vorticity equation yields the 
approximate form valid for synoptic-scale motions:

The above equation states that the change of absolute vorticity following the horizontal 
motion on the synoptic scale is given approximately by the concentration/dilution of 
planetary vorticity caused by the convergence/divergence of the horizontal flow.

It is not accurate in intense cyclonic storms. For these the relative vorticity should be 
retained in the divergence term:

In the above the concentration or dilution of absolute vorticity that leads to changes in 
absolute vorticity following the motion.

The approximate forms above do not remain valid in the vicinity of atmospheric fronts.
The horizontal scale of variation in frontal zones is only ∼100 km, and the vertical velocity 

scale is ∼10 cm s−1 .
For these scales, vertical advection, tilting, and solenoidal terms all may become as large 
as the divergence term.



VORTICITY IN BAROTROPIC FLUIDS

For a homogeneous incompressible fluid, the continuity equation  simplifies
because ∇ · U = 0 or, in Cartesian coordinates to:

so that the vorticity equation may be written as:

We know that  in a barotropic fluid the geostrophic wind is independent of height. 
Letting the vorticity be approximated by the geostrophic vorticity ζg and the wind by 
the geostrophic wind (ug , vg ), we can integrate vertically from z1 to z2 to get



Knowing that

we get

The last one is the barortopic potential vorticity equation, derived in the other way in 
the previous lecture.



The Barotropic Vorticity Equation

If the flow is purely horizontal (w = 0), as is the case for barotropic flow in a fluid of 
constant depth, the divergence term vanishes  and we obtain the barotropic vorticity 
equation:

Indicating that absolute vorticity is conserved following the horizontal motion.

More generally, absolute vorticity is conserved for any fluid layer in which the 
divergence of the horizontal wind vanishes, without the requirement that the flow be 
geostrophic.

For horizontal motion that is nondivergent (∂u/∂x + ∂v/∂y = 0), the flow field can be 
represented by a streamfunction ψ (x, y) defined so that the velocity components are 
given as u = −∂ψ/∂y, v = +∂ψ/∂x. The vorticity is then given by

The velocity field and the vorticity can both be represented in terms of the
variation of the single scalar field ψ (x, y), and barotropic vorticity equation can be 
written as a prognostic equation for vorticity in the form:



In the above Vψ ≡ k × ∇ψ is a nondivergent horizontal wind. The equation states that the 

local tendency of relative vorticity is given by the advection of absolute vorticity.

This equation can be solved numerically to predict the evolution of the 
streamfunction, and hence of the vorticity and wind field. In fact this was the firs numerical 
weather forecast!!
You can get the code of this forecast from:  http://mathsci.ucd.ie/~plynch/eniac/ and run it on 
your cell phone.

Considering that the flow in the mid-troposphere is often nearly nondivergent on the 
synoptic scale, the above equation  provides a surprisingly good model for short-term 
forecasts of the synoptic-scale 500-hPa flow field.

http://mathsci.ucd.ie/~plynch/eniac/
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