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NASA
Energy Balance

THE EARTH is illuminated by shortwave  SOLAR radiation, which is partially 
absorbed and partially reflected.

In  (quasi) equilibrium energy of absorbed radiation is balanced by emission in 
thermal infrared.

 Deflections from the equilibrium result in climate system heating/cooling. 



ENERGY IN CLIMATE SYSTEM 
1. Solar energy flux = ¼ of Solar constant  

1/4*1362W/m2 ≈ 341W/m2.

2. Earth's surface albedo, mean ≈0.3, highly variable, 
from 0.9 (fresh snow)  to 0.07 (clean ocean).

3. Geothermal energy flux ≈0.092W/m2.

4. Heat flux from fossil fuel combustion  ≈0.026W/m2.

BASIC PROPERTIES OF THE  CLIMATE SYSTEM
1. Air: surface pressure ≈1000hPa (10m of water), 
cp=1004J/kg*K.
2.  Water: global average depth ≈ 3000m, cw=4192J/kg*K.
3.  Ground – only a shallow layer responding to radiative fluxes.

4.  Greenhouse gases: H2O, CO2, CH4, O3, many others.



Forcings and feedbacks in climate system.

Climate forcings are the initial drivers of a climate shift. 
Examples: solar irradiance, changes in the planetary orbit, anthropogenic or volcanic 
emissions of greenhouse gases.

Climate feedbacks are processes that change as a result of a change in forcing, 
and cause additional climate change. Examples : ice-albedo feedback, CO2 
solubility.

Feedbacks can be positive or negative.

Positive feedbacks, when exceeding thresholds, may lead to rapid climate changes. 
There are indications in paleoclimatological data that such changes occurred in 
geological history of the planet.
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http://www.wmo.int/pages/themes/climate/climate_observation_networks_systems.php

Atmosphere: Over 11,000 weather stations, as well as 
satellites, ships and aircraft take measurements.  
1040 of  stations are selected to provide high quality climate data.
There are special networks at national (e.g. Reference Climate Stations), regional 
(e.g. Regional Basic Climatological Network) and global scales. (e.g. the Global 
Climate Observing System - GCOS - Surface Network, GSN). 

Weather stations and buoys Upper air soundings

Voluntary ship observations Aircraft based observations

http://www.wmo.int/pages/themes/climate/climate_observation_networks_systems.php


OCEAN:
ARGO project: temperature and salinity profiling, deep sea currents.

http://www.argo.ucsd.edu/



OCEAN:
ARGO project: temperature and salinity profiling, deep sea currents.

http://www.argo.ucsd.edu/ , https://www.aoml.noaa.gov/argo/

Thousands of 
automatic 
profilers 
provide actual 
data from the 
world ocean.

http://www.argo.ucsd.edu/
https://www.aoml.noaa.gov/argo/


Satellite systems of 
NASA, ESA, JAXA
and others.



Observations - summary

https://www.ametsoc.org/index.cfm/ams/publications/bulletin-of-the-american-meteorological-society-bams/state-of-the-climate/

Temperature anomaly OHC  change



https://www.ipcc.ch/report/ar6/wg1/



Energy balance of climate system. Units: W/m2. https://www.ipcc.ch/report/ar6/wg1/



Schmidt GA, et al., 2023, CERESMIP: 
a climate modeling protocol to 
investigate recent trends in the 
Earth's Energy Imbalance. Front. 
Clim. 5:1202161. 
https://doi.org/10.3389/fclim.2023.12
02161

Energy imbalance increases ...

https://doi.org/10.3389/fclim.2023.1202161
https://doi.org/10.3389/fclim.2023.1202161


https://www.ametsoc.org/index.cfm/ams/publications/bulletin-of-the-american-meteorological-society-bams/state-of-the-climate/https://www.ametsoc.org/index.cfm/ams/publications/bulletin-of-the-american-meteorological-society-bams/state-of-the-climate/



Why particles with 3 or more atoms absorb 
long-wave (low energy) radiation?



Regular observations of CO2 
and the other atmospheric 
gases are reported to WMO 
World Data Centre for 
Greenhouse Gases 
(WDCGG)

http://ds.data.jma.go.jp/gmd/wdcgg/

http://scrippsco2.ucsd.edu/

http://ds.data.jma.go.jp/gmd/wdcgg/
http://scrippsco2.ucsd.edu/


Global fossil CO2 emissions: 37.1 ± 2 GtCO2 in 2022, 63% over 1990
  Projection for 2023: 37.5 ± 2 GtCO2, 1.1% [0.0% to +2.1%] higher than 2022

When including cement carbonation, the 2022 and 2023 estimates amount to 36.4 ± 2 GtCO2 and 36.8 ± 2 GtCO2 
respectively 

The 2023 projection is based on preliminary data and modelling.
Source: Friedlingstein et al 2023; Global Carbon Project 2023
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https://doi.org/10.5194/essd-15-5301-2023
http://www.globalcarbonproject.org/carbonbudget/


Global carbon budget
Carbon emissions are partitioned among the atmosphere and carbon sinks on land and in the ocean

The “imbalance” between total emissions and total sinks is an active area of research

Source: Friedlingstein et al 2023; Global Carbon Project 2023
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Another signature of fossil fuel 
combustion 

C+2O=CO2 

is the ratio of  O2/N2 in air.

Carbon stable isotopes 
concentration ratio 13C/12C  allows 
to determine the role of fossil fuel 
combustion in CO2 concentration 
increase in the atmosphere and in 
the ocean. 
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Climate modeling: a virtual planet 

geophysical fluid dynamics 
thermodynamics
radiative transfer
chemistry equations
boundary conditions

* numerical code
* data and initial conditions
* supercomputing facility

model equations

virtual reality allowing for simulating 
climate



 The development of climate models over the last 35 years 



Predictability of weather and climate

Edward N. Lorenz (1917-2008):

Selected papers:

„Deterministic nonperiodic flow”, 1963 
(sensitivity of solutions to initial conditions: “butterfly effect”, a well defined 
attractor)

„The problem of deducing the climate from the governing equations”, 1964 
(long term predictability – obcertainties in the governing equations)

„Climatic change as a mathematical problem”, 1970 
(unpredictable weather does not mean that climate is not predictable)

„Predictability – a problem partly solved”, 2006



Predictability of weather and climate – illustration:

http://www.wetterzentrale.de/topkarten











https://www.ipcc.ch/report/ar6/wg1/



Arguments, that climate model provide valuable information:

1) the models can reproduce the current climate; 

2) the models can reproduce the recent observed trends as well as the more distant past;

3) the models are based on physical principles;

4) there is a hierarchy of the models from the simplest ones to most complicated, which 

allows for understanding and interpretation many of the results;

5) the value of simulations is increased where multiple models are available, since they 

indicate which changes are more certain than others. 

 Knutti, R., 2008: Should we believe model predictions of future climate change?doi: 10.1098/rsta.2008.0169
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b) Change in global surface temperature (annual average) as observed and
simulated using human & natural and only natural factors (both 1850-2020)
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Standard deviation of temperature (°C)
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Fig. 2.65. (a) Effective radiative forcing (W m-2) due to
long-lived greenhouse gases (LLGHGs; see Table 2.11 for
details on industrial gases). (b) Annual increase in effec-
tive radiative forcing (W m-2 yr-') smoothed by a 10-year
running average.
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NASA



Energy Balance



THE EARTH is illuminated by shortwave  SOLAR radiation, which is partially absorbed and partially reflected.



In  (quasi) equilibrium energy of absorbed radiation is balanced by emission in thermal infrared.



 Deflections from the equilibrium result in climate system heating/cooling. 



ENERGY IN CLIMATE SYSTEM 

1. Solar energy flux = ¼ of Solar constant  

	1/4*1362W/m2 ≈ 341W/m2.



2. Earth's surface albedo, mean ≈0.3, highly variable, 

	from 0.9	(fresh snow)  to 0.07 (clean ocean).



3. Geothermal energy flux ≈0.092W/m2.



4. Heat flux from fossil fuel combustion  ≈0.026W/m2.



BASIC PROPERTIES OF THE  CLIMATE SYSTEM

1. 	Air: surface pressure ≈1000hPa (10m of water), 					cp=1004J/kg*K.

2.  Water: global average depth ≈ 3000m, cw=4192J/kg*K.

3.  Ground – only a shallow layer responding to radiative fluxes.

4.  Greenhouse gases: H2O, CO2, CH4, O3, many others.







Forcings and feedbacks in climate system.



Climate forcings are the initial drivers of a climate shift. 

Examples: solar irradiance, changes in the planetary orbit, anthropogenic or volcanic emissions of greenhouse gases.



Climate feedbacks are processes that change as a result of a change in forcing, and cause additional climate change. Examples : ice-albedo feedback, CO2 solubility.



Feedbacks can be positive or negative.



Positive feedbacks, when exceeding thresholds, may lead to rapid climate changes. 

There are indications in paleoclimatological data that such changes occurred in geological history of the planet.
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http://www.wmo.int/pages/themes/climate/climate_observation_networks_systems.php

Atmosphere: Over 11,000 weather stations, as well as 

satellites, ships and aircraft take measurements.  

1040 of  stations are selected to provide high quality climate data.

There are special networks at national (e.g. Reference Climate Stations), regional (e.g. Regional Basic Climatological Network) and global scales. (e.g. the Global Climate Observing System - GCOS - Surface Network, GSN). 



















Weather stations and buoys



Upper air soundings



Voluntary ship observations



Aircraft based observations





OCEAN:

ARGO project: temperature and salinity profiling, deep sea currents.



http://www.argo.ucsd.edu/







OCEAN:

ARGO project: temperature and salinity profiling, deep sea currents.



http://www.argo.ucsd.edu/ , https://www.aoml.noaa.gov/argo/





Thousands of automatic profilers provide actual data from the world ocean.













Satellite systems of NASA, ESA, JAXA

and others.





Observations - summary



https://www.ametsoc.org/index.cfm/ams/publications/bulletin-of-the-american-meteorological-society-bams/state-of-the-climate/



Temperature anomaly								OHC  change					











https://www.ipcc.ch/report/ar6/wg1/







Energy balance of climate system. Units: W/m2. 







https://www.ipcc.ch/report/ar6/wg1/





Schmidt GA, et al., 2023, CERESMIP: a climate modeling protocol to investigate recent trends in the Earth's Energy Imbalance. Front. Clim. 5:1202161. https://doi.org/10.3389/fclim.2023.1202161





Energy imbalance increases ...





https://www.ametsoc.org/index.cfm/ams/publications/bulletin-of-the-american-meteorological-society-bams/state-of-the-climate/



https://www.ametsoc.org/index.cfm/ams/publications/bulletin-of-the-american-meteorological-society-bams/state-of-the-climate/









Why particles with 3 or more atoms absorb long-wave (low energy) radiation?







water_vibrationsKażda molekuła, która lata sobie w powietrzu, wykonuje jednocześnie jakieś ruchy. Oscyluje, kręci się, obraca, robi fikołki. Każdy taki stan związany jest z określoną energią. I żeby przeskoczyć z jednego do drugiego, potrzeba pochłonąć lub wyemitować konkretną ilość energii. Dlatego cząsteczki pochłaniają fale o konkretnych długościach, bo konkretna długość fali to konkretna energia fotonu. 

Ale jeśli cząsteczek gazu robi się więcej i więcej, to rośnie prawdopodobieństwo, że będą się one zderzać. A to znaczy, że mogą pochłonąć także fotony o innych energiach niż te podstawowe – bo jest duże prawdopodobieństwo, że nadmiar oddadzą kolegom i koleżankom. 









Regular observations of CO2 and the other atmospheric gases are reported to WMO World Data Centre for Greenhouse Gases (WDCGG)



http://ds.data.jma.go.jp/gmd/wdcgg/



http://scrippsco2.ucsd.edu/











Global fossil CO2 emissions: 37.1 ± 2 GtCO2 in 2022, 63% over 1990

  Projection for 2023: 37.5 ± 2 GtCO2, 1.1% [0.0% to +2.1%] higher than 2022



When including cement carbonation, the 2022 and 2023 estimates amount to 36.4 ± 2 GtCO2 and 36.8 ± 2 GtCO2 respectively 

The 2023 projection is based on preliminary data and modelling.

Source: Friedlingstein et al 2023; Global Carbon Project 2023





Global Fossil CO2 Emissions





Uncertainty is ±5% for one standard deviation (IPCC “likely” range)









Global carbon budget



Carbon emissions are partitioned among the atmosphere and carbon sinks on land and in the ocean

The “imbalance” between total emissions and total sinks is an active area of research



Source: Friedlingstein et al 2023; Global Carbon Project 2023











Another signature of fossil fuel combustion 

			C+2O=CO2 



is the ratio of  O2/N2 in air.



Carbon stable isotopes concentration ratio 13C/12C  allows to determine the role of fossil fuel combustion in CO2 concentration increase in the atmosphere and in the ocean. 
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Climate modeling: a virtual planet 





	geophysical fluid dynamics 

	thermodynamics

	radiative transfer

	chemistry equations

	boundary conditions



*	numerical code

*	data and initial conditions

*	supercomputing facility









model equations







virtual reality allowing for simulating climate







 The development of climate models over the last 35 years 





Predictability of weather and climate



Edward N. Lorenz (1917-2008):



Selected papers:



„Deterministic nonperiodic flow”, 1963 

(sensitivity of solutions to initial conditions: “butterfly effect”, a well defined attractor)



„The problem of deducing the climate from the governing equations”, 1964 (long term predictability – obcertainties in the governing equations)



„Climatic change as a mathematical problem”, 1970 

(unpredictable weather does not mean that climate is not predictable)



„Predictability – a problem partly solved”, 2006











Predictability of weather and climate – illustration:



http://www.wetterzentrale.de/topkarten























https://www.ipcc.ch/report/ar6/wg1/







Arguments, that climate model provide valuable information:



1) the models can reproduce the current climate; 

2) the models can reproduce the recent observed trends as well as the more distant past;

3) the models are based on physical principles;

4) there is a hierarchy of the models from the simplest ones to most complicated, which allows for understanding and interpretation many of the results;

5) the value of simulations is increased where multiple models are available, since they indicate which changes are more certain than others. 















 Knutti, R., 2008: Should we believe model predictions of future climate change?doi: 10.1098/rsta.2008.0169
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