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Figure 2.3 The spherical co-
ordinate system. The orthogo-
nal unit vectors i, j and k point
in the direction of increasing
longitude A, latitude #, and
altitude z. Locally, one may
apply a Cartesian system with
variables x, y and z measur-
ing distances along i, j and k.
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Vertical temperature profile in adiabatic isobaric atmosphere

Consider adiabatic atmosphere, air as an ideal gas:
c,dT +pdv=0, pv=RT.

Then:

c,dInT)+Rd(nv)=0, T v®=const.

Let’s introduce;

—C/ C+R/—1 Ko Boii2oa
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which results in:
v~ = const
Tp™" = const

pv’ = const




Tp™" = const

Let’s define temperature conserved in the course of adiabatic changes of pressure:

@6’( — Tp —K

0_(po)
I \p

Here po IS the reference pressure, conveniently taken as 1000hPa.
Using hydrostatic relation and first thermodynamic principle:

c,dl’ —vdp =0
dp = —pgdz
dp = S = vdp = —gdz
Vv
one obtains: c,dT’ +gdz =0

. . dT 9,817/,
which can be expressed as: 1~ — _ _8& D S Vs Sa0u0L K
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I' ;4 s dry adiabatic lapse rate.



Primitive equations

The inviscid momentum equation can be written as:

D l
—v-l-?.ﬂxv:——?p—?i'.
Dt 0

(notice that here geopotential gradient V® =—g stands for gravity acceleration)

This equation, together with conservation of mass (continuity equation) and
conservation of energy (adiabatic, most often in the form:

= 0)

are, after some approximations called “primitive equations” .

D¢
Dt

The typical approximations are:

1) the hydrostatic approximation: Jp

2) the shallow fluid (shallow water) approximation: r=a+z (a- radius, z — height above
sea level), and r is replaced by a evervwhere except when differentiated:

1 o(r3w) dw

r2  ar dz




Let's consider momentum equation in Cartesian coordinates in a plane tangent to the
surface of the Earth in a given location.

d 1 d
%-{—[U-?}u+2.§?}-w—2!23u il 4

d 0 dx
dv 1 dp
o~ + {U’ . W)U + ZQEH —i—tE e T
dt o dy
dw 1 dp
—+ @ -V)w+2(25v-2yu)=——_———g,
dt o 0z

Here @ — 0.i+ 2,j+ 2.k

If we ignore the components of Q not in the direction of the local vertical, then

Q
Du | 1 dp j}

Dt o dx

Duv +f 1 dp di
U =———,
D 2 o dy
Dw l ap -
S e
Dt o 0z |
Here  fo = 282,sInt}y represents constant Coriolis parameter. The plane is

5
tangent to the Earth's surface at the latitude Uo. This approximation is called ,f-plane”.
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In reality, the magnitude of the vertical component of rotation varies with latitude, which is
not accounted in f-plane.
One can approximate latitudinal variations by allowing the effective rotation vector to vary:

f =280sint ~ 282 sintty + 282 cos to(V — By),

then on the tangent plane we may mimic this by allowing the Coriolis parameter to vary
as

f=Jo+ By
here fo = 2Q2sinty and f = df/dy = (282 cosihy)/a

The above is known as the beta-plane approximation. It captures the the most important
dynamical effects of sphericity, without the complicating geometric effects, which are not
essential to describe many phenomena: fyis replaced by fo +[y to represent a varying
Coriolis parameter:

Du f o
— XU = —— 7,
D z}

where [ = (fy + ﬁ_l-‘)l:. In component form this equation becomes

Du , 1 dp Duv , 1 dp
——fu===2L + fu=--"L
Dt p 0x Dr o dy




THE BOUSSINESQ APPROXIMATION

The density variations in the ocean and in the atmospheric boundary layer are quite small
compared to the mean density. In the ocean three effects are important: the compression of
water by pressure ( p ), the thermal expansion of water if its temperature changes ( T ), and
the haline contraction if its salinity changes ( S ). An appropriate equation of state to
approximately evaluate these effects is the linear one:

F‘=Pn[1 = BT =T+ Bs (8 = 8e) & L]

R
Pocy

Br ~2x107*K™, Bg ~ 1073 psu! and ¢; ~ 1500ms™"

In 1978, oceanographers redefined salinity in the Practical Salinity Scale (PSS) as the
conductivity ratio of a sea water sample to a standard KCI solution. Although PSS is a
dimensionless guantity, its "unit” is usually called PSU. Salinity of 35 equals 35 grams of salt
per liter of solution.

- |ﬂpp| if g!f
Pressure compressibility: ~ A,p ~ Ap/c* ~ pogH [c* P 1t = <L
Thermal expansion: Arp ~ —BrpeAT  WATPl 1 4 BrAT < 1.
Po
Saline contraction: Acep 2 AS
Lo

l.e. In the ocean density fluctuations are small.



The Boussinesq equations are a set of equations that exploit the smallness of density
Variations. We may write:
p = po+op(x,y,z,1)
= po + P+ p'(x, y,z2,1)
= p(z)+ p'(x, y,z,1)
and
61, 10'[, 18p] < po.

or Boussinesq approximation.

Associated with the reference density is a reference pressure in hydrostatic balance with it:

p =pol(z) + dp(x,y,z,1)
p)+ p'(x,y,2,1),

where |dp| < po, |p'| < p and

d po dp
dz &R dz

—g0.

Note that V, p = V., p’ = V.,dp and that py = p if |p| < pg.

adentin OO ;



The momentum equation can be written (note horizontal gradient operator without z) as:

Dv d p
(po +dp) (E + 202 x 1.-) = —=Vip — ff!—uk — 2(po + op)K,

02

Accounting for hydrostatic balance of the reference density and pressure we get:

D
(po + 0p) (D_:: + 282 X u) = —Vip — gopk.

For small differences of density

D
(D—?+2£?xv)=—?¢}+hk

Where
¢ = 3p/po b = —gop/po
and b stays for buoyancy.

It is common to say that the Boussinesq approximation ignores all variations of density of
a fluid in the momentum equation, except when associated with the gravitational term. 10



Typically for most large-scale motions the deviation pressure and density fields are also
approximately in hydrostatic balance,which results in:

Ip

oz

b.

A condition for the above to hold is that vertical accelerations are small compared to
gop /po , and not compared to the acceleration due to gravity itself.

d
2P 4V (pv) =0
ot

Mass conservation:; ,
Dop -+ ( + 00}V 0
—_— - v = ().
D: 20 £

When the total derivative in the above and advection scale in the same way then the above
can be approximated as:

V.-v =10

Note that the evolution of density (leftmost term) does NOT follow from the above
momentum equations!!!

It is given by the thermodynamic equation in conjunction with an equation of state, and this
should not be confused with the mass conservation equation. 11



Thermodynamic equation
Neglecting salinity a useful starting point is to write the thermodynamic equation as:

D_p_ 1 Dp B Q _ (Fuﬁr)
Dt ¢? Dt (dn/op), T

using (dn/dp)p = (dn /0T ) p(dT /dp)p =~ cp/(TpoPT).

Then, from Boussinesq approximations for density and pressure one may write:

Dif ¢2 Dt =-0

Dép 1 Dpy : (Puﬁr)

% (.ﬁp -+ Tj_zg:) — —Q (,ﬂuﬁr) :

The above, keeping in mind that h = —gdp/ py can be approximated as:

DA . : .
— =} b = Cp.
Dr ) gbrQ/ p

The above set of equations (momentum, mass continuity equation and thermodynamic  ,
equation) form a closed set, called the simple Boussinesq equations.



The Boussinesq equations (in a slightly more general form, using equation of state — look
into Valis book), with the hydrostatic and traditional approximations are often considered to
be the oceanic primitive,equations:

Summary of Boussinesq Equations

The simple Boussinesq equations are, for an inviscid fluid:

Duv
Momentum equations: Dr + f xv=-V¢ + bk (B.1)
Mass conservation: Magii=1 tH.2)
: Db ;
Buoyancy equation: Br — (B.3)

A more general form replaces the buoyancy equation by:

DI

Thermodynamic equation: Dr v, (B.4)
. _ DS .
Salinity equation: Br i (B.5)

Equation of state: b=5b(,58,z) (B.6)
13



Energetics of the Boussinesqg system

In a uniform gravitational field, with no other forcing or dissipation, the Boussinesq
equations are:

Dv Db
— + 22 xv = bk — Vo, V-v =0, — =,
D1 Dt

Taking dot product of the momentum equation with v we obtain an equation for the
evolution of kinetic energy density:

1 Dv? ; V- (69)

——— =bhw —V - (¢Qv

2 Dt ¢
Taking V& = —k (so @ = —z) and differentiating one gets:

The above, together with results in the equation for the evolution of potential
energy:

D
E(h P) = —wbh. 14



Adding potential and kinetic energies and expanding the material derivative one obtains an
energy equation for the Boussinesq system:

0 | |
f— (—1?“ + hc}.'l) + V- [u (—1.-2 + b + q.‘))] = (.
dt \ 2 2

The energy density (divided by po ) is just v/2+bh.

Integral of the second term multiplied by po is the potential energy of the flow minus that of
the basic state. Db

If there were a heating term on the right-hand side of 5~ =0

this would directly provide a source of

potential energy, rather than internal energy as in the compressible system.

Because the fluid is incompressible, there is no conversion from kinetic and potential energy
into internal energy.

15
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EQUATIONS FOR A STRATIFIED ATMOSPHERE: THE ANELASTIC APPROXIMATION

In the atmosphere the density varies significantly, mainly in the vertical. Deviations of both
density and pressure from a statically balanced state are often small, the relative vertical
variation of potential temperature is also small. This allows to formulate simplified set of
equations, useful for theoretical and numerical analysis because sound waves are

eliminated by way of an ‘anelastic’ approximation. To begin we set:
p=p(z)+dp(x,y,z,1), p=pz)+dp(x.y.z.1)

8p| < ||

= —gp(z).

dz
Importantly, the density basic state is now a (given) function of vertical coordinate. As with
the Boussinesq, the idea is to ignore dynamic variations of density except where associated

with gravity.

Remember that, air can be considered an ideal gas fulfilling:

R ]
s=logh =logT — —logp = —logp-logp,
Cp Y
v =cpley , 1ép dp 1ép 6
0§ = ——— — & —— — — 18

yp p YD P



When:

5=y 'logp—logp
Then 5 1dF5 145 g5 1dp
dz

—
—
— —

ypdz pd:z yvp pdz

In the atmosphere, the left-hand side is, typically, much smaller than either of the two terms
on the right-hand side.

The (horizontal) momentum equation
N ,. Du .
[P‘f‘ﬁ'}a + f xu=-Vip.

Neglecting density fluctuations we get:

LW, V.

e X H = — :

Df a =
Where

¢ = dp/p,
The above is similar to the corresponding equation in the Boussinesq approximation.

19



Consider vertical component of the momentum equation (using decomposition of pressure

and density into reference and fluctuating parts):

Dw dp dép - dép

D4 8p)— = ——— — — 5o =—2F _ o8
(0 + op) Dt 2 - gp— gop P gop.

Neglecting dp on the left-hand-side we obtain:

Dw  14dép ép d (é;}) dp dp dp
Dr 50 °p oz 720z ° 5
Now we have to eliminate dp in favor of és:

Dw , d (5;}) gdp édpdp
By [ E o e
Dt dz \ p y p  p* oz

Dw 5 d (5;}) N ds ép

D *7 T\ z 5

(i) The gravitational term now involves 6s rather than 6p which enables a more direct
connection with the thermodynamic equation.

(i) The potential temperature scale height (100 km) in the atmosphere is much larger
than the density scale height ( 10 km), and so the last term in the above is small.

20



When we choose the reference state to be one of constant potential temperature the term
ds/dz vanishes and the vertical momentum equation becomes:

b = 8p/p. 6s = 860/6 and 6 = 6O,

We have now the same form as the Boussinesqg momentum equations, but with different
definitions of geopotential (above) and buoyancy:

b, = gbs = 280/0

Mass conservation;:
ddpo
at

+ V-[(p+ dp)v] = 0.

We neglect p in the divergence term. Further, the local time derivative will be small if time

itself is scaled advectively (i.e., T/L=U and sound waves do not dominate). This allows to

replace temporal derivative of density fluctuations into rate of change of the reference
density in vertical motions, giving:

| d _
V-u+ :.f—(ﬂw] = ( 21
p oz



It is here that the eponymous ‘anelastic approximation’ arises: the elastic compressibility of
the fluid is neglected, and this serves to eliminate sound waves. For reference, in spherical
coordinates the mass conservation equation is:

1 du | d 1 d(wp)
— + (vecostt) + —= =1}
acostt dA  acostt di} p oz
Thermodynamic equation:
Din® QO
Dr Tc'_ﬂ'
Can be approximated as: N
Dés d
D¢ Tc,
. o Dv
And the whole anelastic approximation for — 4+ 282 xv =kb, — V¢
Adiabatic, non viscous flow is: D¢
Db,
" =0
by = gbs = g80/8. Dt
V.-(pv) =0

22



Journal of the Atmospheric Sciences
Volume 19, Issue 2 (March 1962) pp. 173-179

Marca 1962 YOSHIMITSU OGURA AND NORMAN A. PHILLIPS 173

Scale Analysis of Deep and Shallow Convection in the Atmosphere!

YosHIMITSU OGURA AND NORMAN A. PHILLIPS

Massachusetts Institute of Technology
{Manuscript received 18 October 1961, in revised form 27 Novembher 1961)

ABSTRACT

The approximate equations of motion derived by Batchelorin 1953 are derived by a formal scale analysis,
with the assumption that the percentage range in potential temperature is small and that the time scale is
set by the Brunt-Viiisi]i frequency. Acoustic waves are then absent. If the vertical scale is small compared
to the depth of an adiabatic atmosphere, the system reduces to the (non-viscous) Boussinesq equations. The
computation of the saturation vapor pressure for deep convection is complicated by the important effect of

the dynamic pressure on the temperature. For shallow convection this effect is not important, and a simple
set of reversible equations is derived.

23



Energetics of the anelastic equations

Kinetic energy equation, obtained in the same manner as in Boussinesq case is:

W E 2 50 ” 2
pE(Eu ) = —V - -(¢dpv) + by pw

Define geopotential d(z) such that v d=-k :

D& -

— = —wp.
PDI o

Taking into account
J Db,

Dt

0

one gets equation for the rate of change of potential energy:

...,D“:'ﬂd]} B
—_— = —=Uu :
o Dy af’

Combining it with the kinetic energy equation results in:

D {1, -
pa(gu -I-haﬂ'li) = -V - (¢pv),



After expanding the material derivative and rearrangement

I [-(1, - (1
— | pl v +ba®@ || +V-|pv|=v " +b, D +|| =0.
dt 2 2

This can be written as:

o F .
?"Fv'[l’(f'*ﬂfﬁ)]:ﬂ
L

E = p(w?%/2 + b®)

Where E is the total energy of the flow. Energy, when integrated over the closed domain
(whatever it means) is conserved. Term 5h,¢@ is analogous to the potential energy of a
Boussinesq system, but exactly equal to that because b. is the bouyancy based on

potential temperature, not density. The term combines contributions from both the
internal energy and the potential energy.

25
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