# Turbulence and atmospheric boundary layer Lecture 5

Marta Wacławczyk

Institute of Geophysics, Faculty of Physics, University of Warsaw

marta.waclawczyk@fuw.edu.pl

March 23, 2020

## Summary of lecture 4

#### Transport equation for the turbulence kinetic energy

#### Turbulence modelling

- 0-equation, algebraic models (mixing length), 1-equation models (e.g. Spallart-Allamaras), 2-equation models  $(k \epsilon, k \omega)$ , Reynolds-stress models
- Simplifications statistical stationarity, statistical homogeneity, isotropy
- Decaying turbulence
- 5 Free-shear flows

#### 6 Large Eddy Simulations

• filtering operation, properties of the filter, Smagorinsky model, Germano dynamic model

#### Energy cascade:

"Big whirls have little whirls that feed on their velocity, and little whirls have lesser whirls and so on to viscosity." Lewis Fry Richardson (1881-1953)



< □ > < □ > < □ > < □ > < □ > < □ >

Energy cascade: Dissipation is placed at the end of a sequence of processes. Hence, the rate of dissipation  $\epsilon$  is determined by the first process in the sequence, that is - transfer of energy from the largest eddies.



$$\epsilon \sim \frac{U^3}{L}$$

# Kolmogorov's theory

 $L_0$  - length scale of large, energy-containing eddies,

 $\eta$  - length scale of the smallest, dissipative eddies

#### Kolmogorov's hypothesis of local isotropy

At sufficiently large Reynolds number, the small scale turbulent motions are statistically isotropic

#### First Kolmogorov's similarity hypothesis

In every turbulent flow at sufficiently high Re the statistics of small-scale motions have a universal form that is uniquely determined by  $\nu$  and  $\epsilon.$ 

#### Second Kolmogorov's similarity hypothesis

Second similarity hypothesis - in every turbulent flow at sufficiently high Re the statistics of the motions of scale I such that  $L_0 >> I >> \eta$  have a universal form that is uniquely determined by  $\epsilon$ , independent of  $\nu$ .

< □ > < □ > < □ > < □ > < □ > < □ >

#### First Kolmogorov's similarity hypothesis

In every turbulent flow at sufficiently high Re the statistics of small-scale motions have a universal form that is uniquely determined by  $\nu$  and  $\epsilon.$ 

Kolmogorov's scales

$$\eta = \left(\frac{\nu^3}{\epsilon}\right)^{1/4}, \quad u_\eta = (\nu\epsilon)^{1/4}, \quad \tau_\eta = \left(\frac{\nu}{\epsilon}\right)^{1/2}$$

Kolmogorov's scales, constructed based on the viscosity  $\nu$  and the dissipation rate  $\epsilon$  characterise the smallest dissipative eddies.

$$S_{ij}(\boldsymbol{x},\boldsymbol{r},t) = \overline{[u_i(\boldsymbol{x},t) - u_i(\boldsymbol{x}+\boldsymbol{r},t)][u_j(\boldsymbol{x},t) - u_j(\boldsymbol{x}+\boldsymbol{r},t)]}$$

Let us identify the longitudinal velocity component along the vector  $\mathbf{r}$  between the points:  $u_L$  and two transverse components  $u_{N1}$  and  $u_{N2}$ 

longitudinal structure function  

$$S_{LL} = \overline{[u_L(\mathbf{x}, t) - u_L(\mathbf{x} + \mathbf{r}, t)]^2}$$
transverse structure function  

$$S_{N1N1} = \overline{[u_{N1}(\mathbf{x}, t) - u_{N1}(\mathbf{x} + \mathbf{r}, t)]^2}$$
transverse structure function  

$$S_{N2N2} = \overline{[u_{N2}(\mathbf{x}, t) - u_{N2}(\mathbf{x} + \mathbf{r}, t)]^2}$$



## Structure functions in isotropic turbulence

$$S_{ij}(\mathbf{x},\mathbf{r},t)=S_{ij}(r,t)$$

Moreover,  $S_{N1N1} = S_{N2N2} = S_{NN}$  and  $S_{ij} = 0$  for  $i \neq j$ . Tensor calculus provides the following form of  $S_{ij}$ :

$$S_{ij}(\mathbf{r},t) = S_{NN}\delta_{ij} + (S_{LL} - S_{NN})\frac{r_i r_j}{r^2}$$
(1)

From the continuity equation it follows that

$$\frac{\partial S_{ij}}{\partial r_i} = 0$$

If we differentiate Eq. (1) with respect to  $\frac{\partial}{\partial r_i} = \frac{r_i}{r} \frac{\partial}{\partial r}$  we obtain

$$S_{NN} = S_{LL} + \frac{1}{2}r\frac{\partial S_{LL}}{\partial r}$$

Hence, in the isotropic turbulence the structure function tensor is determined by a single scalar function  $S_{LL}$ .

Marta Wacławczyk (UW)

#### First Kolmogorov's similarity hypothesis

In every turbulent flow at sufficiently high Re the statistics of small-scale motions have a universal form that is uniquely determined by  $\nu$  and  $\epsilon.$ 

$$S_{LL} = F(r, \epsilon, \nu)$$

Dimensional analysis:  $S_{ij}$  has the dimension of  $m^2/s^2$ , same as  $(\epsilon r)^{2/3}$  so, let us create a non-dimensional function

$$\frac{S_{LL}}{(\epsilon r)^{2/3}} = F^+(r,\epsilon,\nu)$$

The only non-dimensional combination of r,  $\epsilon$ ,  $\nu$  is  $r\epsilon^{1/4}/\nu^{3/4}=r/\eta$  Hence,

$$S_{LL} = (\epsilon r)^{2/3} F^+ \left(\frac{r}{\eta}\right)$$

#### Second Kolmogorov's similarity hypothesis

Second similarity hypothesis - in every turbulent flow at sufficiently high Re the statistics of the motions of scale *I* such that  $L_0 >> I >> \eta$  have a universal form that is uniquely determined by  $\epsilon$ , independent of  $\nu$ .

$$S_{LL} = (\epsilon r)^{2/3} F^+ \left(rac{r}{\eta}
ight)$$

In the inertial subrange the function  $F^+$  is a constant and

$$S_{LL} = C_2(\epsilon r)^{2/3}, \quad S_{NN} = \frac{4}{3}C_2(\epsilon r)^{2/3},$$

where  $C_2 \approx 2$ , as follows from measurements.

### Structure functions and Kolmogorov's theory

$$S_{ij}(\mathbf{r},t) = C_2(\epsilon r)^{2/3} \left(\frac{4}{3}\delta_{ij} - \frac{1}{3}\frac{r_i r_j}{r^2}\right),$$

Thus, in the isotropic turbulence, in the inertial range the Kolmogorov's hypotheses are sufficient to determine the dissipation rate  $\epsilon$  (characteristic of small-scales) in terms of the second-order structure function  $S_{ij}$ , the distance r and the constant  $C_2$ .



## Structure functions and Kolmogorov's theory



Once  $S_{LL}$  is calculated, it can be plotted on the log-log plot. The power-law function is a straight line on such plot with the power term 2/3 corresponding to the slope, and the constant term  $C_2 \epsilon^{2/3}$  corresponding to the intercept of the line.

$$\log S_{LL} = \log r^{2/3} + \log C_2 \epsilon^{2/3} = 2/3 \log r + \log C_2 \epsilon^{2/3}$$

## Structure functions - the Kármán-Howarth equation

From the Navier-Stokes equations, transport equations for  $S_{LL}$  can be derived. This is the so-called Kármán-Howarth equation. In the stationary case this equation reads

$$0 = 6\nu \frac{\partial S_{LL}}{\partial r} - S_{LLL} - \frac{4}{5}\epsilon r$$

where  $S_{LLL} = (u_L(\mathbf{x}, t) - u_L(\mathbf{x} + \mathbf{r}, t))^3$ .

The viscous term is negligible in the inertial subrange, which leads to the

Kolmogorov's 4/5 law

$$S_{LLL} = \frac{4}{5}\epsilon r$$

This is an exact result (no experimental constant). Allows for a more precise estimation of  $\epsilon$  in the isotropic case. (However, the size of the ensemble necessary to calculate  $S_{LLL}$  with a good accuracy is larger than for  $S_{LL}$ .)

Marta Wacławczyk (UW)

$$R_{ij}(\boldsymbol{x},\boldsymbol{r},t) = \overline{u_i(\boldsymbol{x},t)u_j(\boldsymbol{x}+\boldsymbol{r},t)}$$

In the isotropic turbulence

$$R_{ij}(\boldsymbol{x}, \boldsymbol{r}, t) = R_{ij}(r, t)$$

Longitudinal and transverse autocorrelation functions

$$f(r,t) = \frac{\overline{u_L(\boldsymbol{x},t)u_L(\boldsymbol{x}+\boldsymbol{r},t)}}{\overline{u_L^2(\boldsymbol{x},t)}} = \frac{R_{LL}(r,t)}{\overline{u_L^2}}$$
$$g(r,t) = \frac{\overline{u_N(\boldsymbol{x},t)u_N(\boldsymbol{x}+\boldsymbol{r},t)}}{\overline{u_N^2(\boldsymbol{x},t)}} = \frac{R_{NN}(r,t)}{\overline{u_N^2}}$$

where  $\overline{u_L^2} = \overline{u_N^2} = u^{'2}$ 

## Autocorrelation functions



Integral length scale:

$$\mathcal{L} = \int_0^\infty f(r) dr$$

Taylor microscales

$$\lambda_f = \left[ -\frac{1}{2} \frac{d^2 f(r)}{dr^2} \bigg|_{r=0} \right]^{-1/2}$$

$$\lambda_g = \left[ -\frac{1}{2} \frac{d^2 g(r)}{dr^2} \bigg|_{r=0} \right]^{-1/2}$$



One-dimensional spectra  $E_{ij}$  - twice 1D Fourier transform of  $R_{ij}$ 

$$E_{ij}(\kappa_I)=2\mathcal{F}(R_{ij})$$

In the inertial subrange

$$E_{LL}(\kappa_l) = C_k \epsilon^{2/3} \kappa_l^{-5/3}$$

(日) (四) (日) (日) (日)

æ



э

Derivation of the energy spectrum function  $E(\kappa)$ . Velocity spectrum tensor

$$\Phi_{ij}(\boldsymbol{x},\boldsymbol{\kappa},t) = \left(\frac{1}{2\Pi}\right)^3 \int \int \int R_{ij}(\boldsymbol{x},\boldsymbol{r},t) \mathrm{e}^{-i\boldsymbol{\kappa}\cdot\boldsymbol{r}} d\boldsymbol{r}.$$

Energy spectrum function is defined as

$$E(\kappa) = \frac{1}{2} \oint \Phi_{ii}(\kappa, t) d\mathcal{S}$$

or, equivalently

$$E(\kappa) = rac{1}{2} \int \int \int \Phi_{ii}(oldsymbol{\kappa},t) \delta(|oldsymbol{\kappa}|-\kappa) d\mathcal{V}$$

- 日 ト - (理)ト - ( 三 ト - 4 三)

3

Turbulence kinetic energy

$$k=\int_0^\infty E(\kappa)d\kappa$$

Turbulence kinetic energy dissipation rate

$$\epsilon = \int_0^\infty 2\nu \kappa^2 E(\kappa) d\kappa$$

Relation between  $E(\kappa)$  and the 1D spectral functions

$$E(\kappa) = \frac{1}{2}\kappa^3 \frac{d}{d\kappa} \left(\frac{1}{\kappa} \frac{dE_{LL}}{d\kappa}\right)$$

#### **S**. B. Pope (2000)

Turbulent Flows Cambridge University Press

æ

# The End

メロト メポト メモト メモト

2