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Alternative approach: Fourier decomposition (no Frisch anymore).

For a flow which is homogeneous in space (i.e. statistical properties are independent of
position), a spectral description is very appropriate, allowing us to examine properties
as a function of wavelength. The total kinetic energy, given by

can be written in terms of the spectrum ¢; ;(k)

(4.6)

where ¢; ;(k) is the Fourier transform of the velocity correlation tensor R, ;(r):

';i]?'-.j (k) - (2?11.)3

f cxp(—ik.r)Ry, (r)dr ; Ri(r) = f w(X)u(x 1) (4.7)

R, ;(r) tells us how velocities at points separated by a vector r are related. If we
know these two point velocity correlations, we can deduce E(k). Hence the energy
spectrum has the information content of the two-point correlation.

Notice that in 4.7 there are velocities in points x and x+r, which is similar to the 2nd order structure finction. In
this equation, al well as in 4.5 there is velocity in second power!!!li.



F(k) contains directional information. More usually, we want to know the energy at
a particular scale & = v k. .k without any interest in separating 1t by direction. To
find E(k), we integrate over the spherical shell of radius & (in 3-dimensions):

E = fE(k)a’k . f;fE(k)dadk - fDmE(k)d.k (4.8)

Then 1
E(k) = j{E(k}dJ _ ﬂ{ﬁf:.flj(k)da (4.9)
Assuming 1sotropy:
B(k) = 2nk2¢,(k) (4.10)
where ¢, (k) = ¢;.(k) for all k such that vVkk = k.

Balance of energy in phase space.

We have an equation for the evolution of the total kinetic energy E. Equally mter-
esting 1s the evolution of E(k), the energy at a particular wavenumber k. This will
mclude terms which describe the transfer of energy from one scale to another, via
nonlinear mteractions.



To obtain such an equation we first take the Fourier transform of the non-rotating, un-
stratified Boussinesq equations, using the following information about Fourier trans-
forms:

Physical space Fourier space
fi(x,1) fi(k,t)

9f [0z ikif

Vf ifk

V2§ —K*f
f(x,t)g(x,t) [f * g

where [f * g] = |4 =k f(D.1)d(q.t)dp
Then the momentum equation in physical space

O, %, 1 OP O,
— — Y = ——— — U;— (4.11)
ot {J'.r"l', on O : {J'.J'_II-

becomes, 1n fourler space:

0, 12). _ kik; - : i1

(The term on the right hand side is the projection of the Fourier transform of u.Vu
onto the plane perpendicular to k. The F.T. of VP 1s parallel to k, while 1 etc are
all perpendicular to Kk.)

The term on the right hand side shows that the nonlinear terms involve triad inter-
actions between wave vectors such that k = p + q.



Now to obtain the energy equation we multiply eqn 4.12 by w;(k’, t), similarly write an
equation for @;(K’,t) and multiply it by u;(k,t), and add the two equations together,
and 1ntegrate over K' to obtain

5] 5\
(E + Quk;) ¢; ik, t) = Triad interaction terms (4.13)

Making use of eqn 4.10 (i.e. assuming isotropy ), we then have

%E(kt) = T(k,t) — 20k*E(k, ) (4.14)
where T'(k, t) comprises the triad interaction terms. If we examine the integral of this
equation over all k

Y - . . ey . . ‘ - 2 : . 415
a;h%L E(&.)dﬁ._ﬁ T(k.,tjdﬁ.—zuL K2 E(k)dk (4.15)

and note that —2vk*F( k) is the Fourier transform of the dissipation term —»V 1.V 11,
then we see the familiar equation for the total energy budget eqn 4.2 1s recovered only
if .
f Tk, t)dk = 0 (4.16)
0
Hence the nonlinear interactions transfer energy between different wave numbers, but
do not change the total energy.



Now, adding a forcing term to the energy equation in k-space we have the following
equation for energy at a particular wavenumber k:

d .
g; E(k.t) = T(k, 1) + F (k. t) - 20k*E(k, 1) (4.17)
where F'(k,t) 18 the forcing term, and T'(k, 1) is the Kinetic energy transfer, due to
nonlinear interactions. The kinetic energy flux through wave number £ 1s 1I( k, 1),

defined as

(k. t) = f CT )k (4.18)
k:
. ATI(k, )
T(k,t) = — 119
(k1) = =28 (4.9

Now for stationary turbulence
WKAE(k) = T(k) + F(k) (4.20)

If F(k), the forcing, is concentrated on a narrow spectral band centered around a
wave number k;, then for & == k.

Wk*E(k) = T(k) (4.21)



If F(k), the forcing, is concentrated on a narrow spectral band centered around a
wave number k;, then for £ &£ k;,
WkE(k) = T (k) (4.21)

In the limit of v — 0, T'(k) = 0. If the dissipation rate
- / 2wk B (k)dk (4.22)

then
= / F(k (4.23)

so that the rate of dissipation of energy is equal to the rate of injection
of energy. Now in the limit of » — 0, but nonzero F'(k), € must remain nonzero,
in order to balance the energy injection. (This is achieved by [ k2E(k)dk — o).
Then we find the energy flux in the limit v — 0:

II(k)=0,:k <k
[M(k)=€:k>Fk (4.24)
Hence at vanishing viscosity, the kinetic energy flux 1s constant and equal to the
injection rate, for wavenumbers greater than the injection wavenumber k;. Hence
we have the following scenario: Energy i1s input at a rate e at a wavenumber k;, 1s

fluxed to higher wavenumbers at a rate e, and eventually dissipated at very high
wavenumbers at a rate €, even in the hmit of  — 0.



Kolmogorov's 1941 theory for the energy spectrum makes use of the result that e, the
energy 1njection rate, and dissipation rate also controls the flux of energy. Energy
flux 1s independent of wavenumber k&, and equal to € for & > k;. Kolmogorov’'s theory
assumes the imjection wavenumber 1s much less than the dissipation wavenumber
(k; << kg, or large Re). In the intermediate range of scales k; < k < kg neither the
forcing nor the viscosity are explicitly important, but instead the energy flux e and
the local wavenumber &k are the only controlling parameters. Then we can express
the energy density as

E(k) = fl(e k) (4.25)
Now using dimensional analysis:

Quantity Dimension
Wavenumber & 1/L
Energy per unit mass £ U2 ~ L? / T?  we find
Energy spectrum E(k) EL ~ L3/T*
Energy flux e E/T ~ L?/T3

E(k) = Cge** k=2 (4.26)

C're 18 a universal constant known as the Kolmogorov constant. The region of param-
eter space in k where the energy spectrum follows this £=°/2 form is known as the
Inertial range. In this range, energy cascades from the larger scales where 1t was
injected ultimately to the dissipation scale. The theory assumes that the spectra at
any particular £ depends only on spectrally local quantities - 1.e. has no dependence
on k; for example. Hence the possibility for long-range interactions 1s ignored.



We can also derive the Kolmogorov spectrum in the following manner (after Obukhov):
Define an eddy turnover time 7(k) at wavenumber k& as the time taken for a parcel
with energy E(k) to move a distance 1/k. If 7(k) depends only on E(k) and k then,

from dimensional analysis

1/2

(k) ~ [k.EE(ﬁ:)]_ (4.27)

The energy flux can be defined as the available energy divided by the characteristic
time 7. The available energy at a wavenumber k is of the order of KE(k). Then we
have

 kE(k)

ey~ FTERT (4.28)

€

and hence

E(k) ~ /3 =5/3 (4.29)
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Fic. 5. Power spectral densities S{f) of the same data as presented in Figs. 3 and 4. All
spectra are in units of their variance per frequency: spectra of BBC data are divided by a factor
of 10 for better resolution. For the top panel the frequencies are converted into wavelength
assuming a constant horizontal wind speed of 8 m s™%



Kolmogorov scale and other characteristic scales of turbulence

Above a certain wavenumber k;, viscosity will become important, and E(k) will
decay more rapidly than in the inertial range. The regime £ = k; 1s known as the
dissipation range. An estimate for k; can be made by assuming

E(}f-) = C’fffgfgk_wg ok < k< ky
Ek)=0: k> k (4.30)

and substituting in eqn 4.22, and integrating between k; and k;. Then we have

| /4

The inverse l; = 1/k4 is known as the Kolmogorov scale, the scale at which dissi-
pation becomes important.
314
lg ~ (F]-’l ) (4.32)

/

Komogorov scale is often denoted as n



At the other end of the spectrum, the important lengthscale 1s ;. the integral scale.
the scale of the energy-containing eddies. [; = 1/k;. We can also evaluate [; in terms
of e. We can write

W= U2 = f E(k)dk (4.33)
0

and substituting for E'(k) from eqn 4.26
(2 — f Cre 221753 (4.34)
0

Assume that 1/2 of the energy is contained at scales k > k;. Then

U2 = 6Cy e/ 3k (4.35)
and )
ki ~ 73 (4.36)
so that l; ~ U*® /é. Then the ratio of maximum and minimum dynamically active
scales 274
. : r3 T7.\ " ,
‘!d }L-_?_ 3/ d3/4 . i

where Hey, 1s the Integral Reynolds number. Hence the range of scales goes as
the Reynolds number to the power 3/4. This information is useful in estimating
numerical resolution necessary to simulate turbulence down to the Kolmogorov scale
at a chosen Reynolds number.



Taylor microscale.

A third length scale often used to characterise turbulence is the Taylor microscale:

(4.38)

The Taylor microscale 1s the characteristic spatial scale of the velocity gradients.
Using A, an alternative Reynolds number can be defined:

(4.39)

where Re, ~ Reglji ~ Ei/}..

ooy

Taylor microscale Reynolds number

i —

thl—i-l-—"'_




Turbulent Kinetic Energy, second order moments — phenomenology

Adding the contributions due to the 3 velocity components and rewriting in Einstein
notation we have

J LT d \u? 0O

_ ) 4" Transport

(3.14)

(3.15)
and (b) buoyant production

(3.16)
and lost through dissipation

(3.17)

The buoyant production term may be either positive (generation of kinetic energy,
loss of potential energy) or negative (loss of KE, increase in PE).
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Fig. 2.4 Terms in the TKE equation (2.74b) as a function of height, normalized in the
case of the clear daytime ABL () through division by we?/h; actual terms are shown in
(b) for the clear night-time ABL. Profiles in (a) are based on observations and model
simulations as described in Stull (1988; Figure 5.4). and in () are from Lenschow ef af.
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Academic Publishers.



POST - Physics of Stratocumulus Top, California, 2008

aerosol (CCN)

_ _ - temperature,

microphysics . humidity,
liquid water,
turbulence,




Flight TO13 40Hz segment 68
.29 . . . .

-200-pt avg
—300-pt avg
—400-pt avg

e
o

=
3}

&
—d

Mean Turbulent Kinetic Energy [mefss]

0.05/)

1.806 1.808 1.81 1.812 1.814 1.816
Time [s] «10*

Airborne data in clouds: Estimates of TKE depend on averaging!



a) b) )

800 800 5o - . 800
610 | o
| &
600 600 R 600 L
E E E
2 400 8 400 Z 400
= 2 =
3 T T
200 ¢ 200 ¢ 200 |

0 L L L
0 0.01 0.02 0.03

m[m?’s_g]

Figure 10. a) Vertical velocity variance. b) Vertical velocity 3rd moment. ¢) Median of w’w’w’. The colour code is as in Figure 4. Short horizontal lines indicate averaged
cloud top (z.) and long horizontal lines marks the averaged level of maximum gradient of liquid water potential temperature (z; ).



800 800
700
600  "FETTrES — 600 T,
__500 } _
E E
% 400 % 400
= =
= 300 =
200 ¢ ----ref 200 +
llllsh
100 ||=rc
—shrc
0 : 0 ;
0 0.1 0.2 0 0.05

€+ Bgs [m7s77] Eagalm>s7%)

Figure 11. Resolved plus SGS TKE (left panel) and SGS TKE (right panel). The
colour code 1s as in Figure 4. Short horizontal lines indicate cloud top and long

horizontal lines marks the level of maximum gradient of liquid water potential
temperature.
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Figure 12. Time-averaged TKE budget terms calculated for the last hour of the simulations. Colour code as in Figure 4. Short horizontal lines indicate cloud top and long
horizontal lines marks the level of maximum gradient of liquid water potential temperature.
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Figure 13. Time-averaged TKE budget terms calculated for the last hour of the simulations and normalised to the cloud top. Colour code as in Figure 4.
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