Dynamics of the Atmosphere and the Ocean
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Pressure coordinates

Let's consider primitive equations for the atmosphere approximated by an ideal gas:

Du |
— 4+ XxXu=—-—Vp.
D1 7 5 I
dp
= — —PE,
dz
D#
]
Dt
Dp
— V-v=10,
Dt 77

Here p=pRT and O=T(pr/p)¥® and pr is the reference pressure (usually 1000hPa).
These equations can be transformed from Cartesian (X,y,z) to pressure (x,y,p) coordinates.

The analog to the vertical velocity is: w=Dp/Dt and the advective derivative has the form:

D d v d

— = —tu- + w—.

Dt ot )
The horizontal and time derivatuives are taken at constant pressure. However, x and y are
still purely horizontal coordinates, perpendicular to the vertical (z) axis. The operator D=Dt is
the same in pressure or height coordinates because is y the total derivative of some
property of a fluid parcel. However, the individual terms comprising it in general differ

between height and pressure coordinates.



To obtain an expression for the pressure force, first consider a general vertical coordinate:

(a) (Ei)_l_(ﬂ:) d
ox ) \dx ), \dx ), 9z

The above for {=p gives:
oo ()« () 2
dx /, dx P dz
Applying hydrostatic relationship:
(Hp) B (Eidi')
ax ), "\ox ),

where @=gz is geopotential. Finally,

1
E"F’;p = V,®,

d@
dp

= —U.



Mass continuity in pressure coordinates takes the form:

dew
V- — =0,
p il dp

And the whole set of primitive equations can be written as:

Du +f
— X U
Dt
dd
dp
D#
D¢
dw

V- — =10
F H+H‘p

~V,d

|
J
=

0

Together with the ideal gas equation and potential temperature definition.

These are not quite isomorphic to the Boussinesq equations, because the hydrostatic
equation is: D@/Dp=-a=-(0R/pr)(pr/p)"¥ and not, as we would require, D®/Dp=-0 .



Schematic difference between Cartesian coordinates (left) and pressure
coordinates (right).
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Notice, that horizontal temperature gradients result in changes in the inclination constant
pressure surfaces. Such a situation is called “baroclinicity” (right).



Baroclinicity. Thermal wind.

You might notice from presented potential fields that distances between isobaric
surfaces may differ. What is s the mechanism of these differences?

Consider horizontal flow in geostrophic balance in Boussinesq or anelastic notation:

F dgp | dgh
F v —_—
1 dx a cos 1t oA
. dgh 1 dep
e T N ¥

Consider change of this balance with height, accounting for 0@®/0z=b which gives:

g ab 1 ab
Y9z T dx acosi on
Dug ab 1 8b
dz  dy  add

The above is known as “thermal wind balance”. Notice that b relates to horizontal
temperature gradients in the atmosphere and density gradients in the ocean.



As you see with the previous slide one of the difficulties with pressure coordinates is the
lower boundary condition. Using:

w = — +u-V,z 4+ mw—,
Dt Ot P :

and hydrostatic equation , the boundary condition of w=0 at Z=zs; becomes

d @
—f” +u-?P¢1—a’m={}
{

In theoretical studies one may assume w=0 at p(x,y,zs,t). In practice fact that the lower
boundary is not a coordinate surface has to be accounted for. Additionally for uneven
(topography) lower boundary so-called sigma coordinates are often used.

Sigma coordinates may use height itself as a measure of displacement (typical
in oceanic applications) or use pressure (typical in atmospheric applications o=p/p;

where ps(X,y,Zs,t) is the surface pressure.
The difficulty of applying the above is replaced by a prognostic equation for the surface.
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In pressure coordinates thermal wind balance can be obtained e.g. taking geostrophic
balance in form:

f xu, =—-V,&
and looking for its change with pressure, remembering that D®/Dp=-« :

i) R
{rﬂ'g — v‘ﬂﬂ!‘ = —?FT
ap P

X

Where we accounted for ideal gas equation pa=RT . In component form the above is:

v,  ROT dug  ROT

| E EI Codp p dy

Here temperature horizontal gradients are clearly seen.
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Fig. 7.4 Schematic isotherms (dashed lines, "C) and isotachs (thin solid lines, meters
per second) in the polar front zone. Heavy lines are tropopauses and boundaries of frontal
laver. (Adapted from analvsis model by Berggren, 1952.)

Thermal wind and polar front.
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STATIC INSTABILITY AND THE PARCEL METHOD

Figure 2.6 A parcel is adiabati-
cally displaced upward from level =
to z 4+ dz. If the resulting density
difference, dp, between the parcel
and its new surroundings is positive
the displacement is stable, and con-
versely. If pis the environmental val-
ues, and pg is potential density, we

see that 6p = pg(z) — pglz + 6z2) -
S pe(z) = fo(2)

, e e == ap
bp = plz +02) — plz +8z) = p(z) = p(z + d2) = ——dz.

1z

~

pe(z) |

_/

Z+ 90

[
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bp = p(z+68z)— p(z+ 8z) = pg(z + 6z) — pg(z + 62)

_ . _ _ . (2.218)
= pp(z) — po(z + 0z) = py(z) — pe(z + 9z),

and therefore

.-j e
S —f,fﬂa':. (2.219)
dz
where the right-hand side is the environmental gradient of potential density. If the right-
hand-side is positive, the parcel is heavier than its surroundings and the displacement is
stable. Thus, the conditiona for stability are:

‘}_.._.
Stability : ’;} B (2.220a)
0z
95
Instability : ;}H > 0 (2.220b)
dz
The equation of motion of the fluid parcel is
026z 00
=5 f,pﬂ) §z = —N25z (2.221)
dr2 p\ az
where, noting that p(z) = pg(z) to within O(dz),
Brunt-Vaisala 15
g [ 9P¢
frequency ™ | N*= e ( . ) (2.222)

This is a general expression for the buoyancy frequency, true in both liquids and gases.
It is important to realize that the quantity pg is the locally-referenced potential density



An ideal gas

In the atmosphere potential density is related to potential temperature by pg = pr/(6R).

36
N2 =% (L) , (2.223)
g\ dz

where ! refers to the environmental profile of potential temperature.

The negative of the rate of change of the temperature in the vertical is known as the tem-
perature lapse rate, or often just the lapse rate, and the rate corresponding to df//dz = (
is called the dry adiabatic lapse rate. Using f§ = T(pgfp)ﬁf“f’ and d p/dz = —pg we
find that the lapse rate and the potential temperature lapse rate are related by

aT Tah g
e Tt (2.228)
dz g 0z ¢p
so that the dry adiabatic lapse rate is given by
i (2.229)



Stability :

Instability :

Height

ile) dT
i':—:::-[]I; —{f—-::ﬂfsi,
dz 0z Cp

0 _ 9T g

dz dz Cp

\ Environmental
\ Lapse Rate

+'\ﬂ

Temperature
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A liguid ocean

A sometimes-useful expression for stability arises by noting that in an adiabatic
displacement

1
dpg = 0p — —25;1 =) (2.224)

Cy

If the fluid is hydrostatic ép = —pgdz so that if a parcel is displaced adiabatically its

density changes according to
J
(f_ﬁ) _PE (2.225)
p

P A

If a parcel is displaced a distance 4z upwards then the density difference between it and
its new surroundings is

) 95 95
T ({_p) o (i_’“) jz= [@ + (‘_‘9)]5:* (2.226)
iz /,, 0z g2 dz

which gives:

20



2.10.1 Gravity waves and convection in a Boussinesq fluid

Let us consider a Boussineq fluid, at rest, in which the buoyancy varies linearly with
height and the bouyancy frequency, N, is a constant. Linearizing the equations of
motion about this basic state we obtain

du' g’

— = , 2.243;
o1 A% (2.243a)
dw’ do’ ,
7 = — - + b, (2.243b)
{ 1=
du’  dw’
— 4+ — =10, (2.243c)
dx dz
db’
é +w'N? =0, (2.243d)

where for simplicity we assume that the flow is a function only of x and z. A little
algebra gives a single equation for w’,

2 2\ L8
w2 Taz)im T 52| =0 24

Seeking solutions of the form w' = Re W exp|i(kx + mz — wt)] (where Re denotes
the real part) yields the important dispersion relationship for gravity waves:

s A,Eh,fz

- R § 2.245
k2 + m? ( )

(1




Figure 2.7 Scaled frequency,
w/N, plotted as a function of
scaled horizontal wavenumber,
k/m, using the full dispersion
relation of (solid line,
asymptoting to unit value for
large k /m) and with the hydro-
static dispersion relation (2.249)
(dashed line, tending to oo for
large k/m).

The frequency (see Fig.|2.7

Scaled Frequency (o/N)

0.5+

i 2 3 y
Scaled wavenumber (k/m)

) is thus always less than N, approaching N for small hor-

izontal scales, k& 3> m. If we explicitly neglect pressure perturbations, as in the parcel

argument, then the two equations,

dw'

dt

. 5
form a closed set, and give @~

b,

N2,

db’

N2 = ().
at ik

(2.246)

If the basic state density increases with height then N < 0 and we expect this state

to be unstable. Indeed, (2.245) then gives

+kN 27

(2.247)

= (kz i mz)uz‘



Example of gravity waves in the
atmosphere visualized by
condensation in the wave crest.
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Barotropic Mode

Baroclinic Mode

From: http://www.student.math.uwaterloo.ca/~amat361/Fluid%20Mechanics/topics/internal_waves.htm

24
for future...
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