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Fig. 3.1 A shallow water system. /fi(x, y) is the thickness of a water
column, H its mean thickness, n(x, y) the height of the free surface and
np is the height of the lower, rigid, surface, above some arbitrary origin,
typically chosen such that the average of ny is zero. Ap is the deviation
free surface height, sowe have n = np + h = H + An.

wnZ =)




3.1.1 Momentum equations

The vertical momentum equation is just the hydrostatic equation,

dp

dz

_Pg‘ [3.1)
and, because density is assumed constant, we may integrate this to
p(x,y.z) = —pgz + po (3.2)

At the top of the fluid, z = n, the pressure is determined by the weight of the overlying
fluid and this i1s assumed negligible. Thus, p = 0 at z = 5 giving

px,y.z) = pglh(x,y) —z) (3.3)

The consequence of this is that the horizontal gradient of pressure is independent of
height. That is

V:p = pgVzn (3.4)
where
V, =1 ! + i ? (3.5)
F = ]E JE o

The velocities u and v are functions only of x, y and ¢ and the horizontal momentum
equation is therefore

Du du N du L du ¢ (3.7)
—=—4i—Fv—=— : :
T e T T



In the presence of rotation horizontal equation of motion easily generalizes to:

Du
—+ fxu=—gVn | (3.8)
oy T gVn

where f = /fKk. Just as with the primitive equations, f may be constant or may

vary with latitude, so that on a spherical planet f = 2£2sin¢ and on the f-plane

f=/to+ by

Figure 3.2 The mass budget for
a column of area 4 in a shallow
water system. The fluid leaving

the column is ¢ phu - ndl where | :/\
n is the unit vector normal to '

f/"'_"‘-h-...__.___..a
the boundary of the fluid column. ‘
There is a non-zero vertical veloc-
ity at the top of the column if the ———P U
mass convergence into the column h
IS non-zero.
\
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On the other hand mass flux can be written as:

d d 97
F = pdv’:—f pf?dA=fp!dA
dr dr J 4 4 Of

Comparing two expressions for mass flux one gets conservation of mass in the following

form:;:
)
f [f_h + 'f-*’-{nh}] dAd =0
A {”

the area is arbitrary the integrand itself must vanish, resulting in

dh Dh
ﬁ-{m?-[uh}:[} E_}.;,v.,;:{}

There are many ways to derive the above.

Momentum equations (hydrostatic balance + horizontal momentum) together with the
mass conservation form the simplest set of equations applicable to geophysicsl fluid
dynamics: shallow water equations.



The Shallow Water Equations

For a single-layer fluid, and including the Coriolis term, the inviscid shallow water
equations are:

Momentum: D
U
— + XxXu=——gVn. SW.1
D7 | gVn ( )
Mass Conservation:
D/ i/
—“ +tAhV-u=0 o 4+ V-(hu)=0. (SW.2)
Dt dt

where u 1s the horizontal velocity, /i 1s the total fluid thickness, n is the height

of the upper free surface and 5, 1s the height of the lower surface (the bottom

topography). Thus, fi(x, y,t) = n(x, y,t) — np(x. y). The material derivative 1s
D ’ +u-V ! =1 i T ! (SW.3)
— =—4u-V=—4u—3 +v—, :
Dt dt dt dx dy

with the rightmost expresion holding in Cartesian coordinates.



Because the horizontal velocity is depth independent, the vertical velocity plays no role in
advection. Vertical velocity is certainly not zero for but because of the vertical independence

of the horizontal flow w does have a simple vertical structure;

dw
iz

which after integration really gives w independent of height:

=—-V-u

w=wp—(V-u)z—np).

Dz  Dny
= — —(V-u)(z - :
D Dy ( )(z —1p)

at the upper surface w=Dr/Dt so that here we have

Dy Dy
= — (V- u)(n—np),
e (V-u)(n—1p)
Eliminating the divergence term from the last two equations gives
D Z—Nb D
—(z—=np) = — ).
Dr( 1b) e D:w b)

D (2-m) _ D (zom)
Dt \n—ny Dt h '



REDUCED GRAVITY EQUATIONS
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If we turn the model upside-down we
have a model, perhaps slightly less
realistic, of the atmosphere: the lower
layer represents motion in the
troposphere above which lies an inactive
stratosphere. The equations of motion
are virtually the same in both cases.

Consider now a single shallow moving
layer of fluid on top a deep, quiescent
fluid layer and beneath a fluid of
negligible inertia. This configuration is
often used a model of the upper ocean:
the upper layer represents flow in
perhaps the upper few hundred meters
of the ocean, the lower layer the near-
stagnant abyss.
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Pressure gradient in the active layer
We'll derive the equations for the oceanic case (active layer on top)

Free upper surface:

o =0

pi1(z) = gp1(no — 2), 0_\—/f’_\'
h
ivpl i —g?nﬂ‘ /_\’91/}'\;7'T
21
N

The above gives momentum equation in the form:
P2 u=20

Du
— + Xu=—ovVn,.
~ f gVny

In the lower layer:
p2(z) = p1&(No — M) + p2g(m — 2).

Since the layer is motionless the horizontal pressure gradient in it is zero :
21870 = "ﬁ"lgf'-'?l + constant,



Defining “reduced gravity” as: £ = g(p2 — p1)/p1

we get the following momentum equation:

Du £ I
— X 0 = .
D1 g v

the mass conservation equation has the form:

e B 0
Eml-n.r - = 0,

where h = no — 11.

Since g>>g', surface displacements are much smaller than the displacements at the
interior interface. This sis the case of the real ocean where the mean interior isopycnal

displacements may be several tens of meters but variations in the mean height of ocean
surface are of order centimeters.

The smallness of the upper surface displacement suggests that we will make little error
IS we impose a rigid lid at the top of the fluid. Displacements are no longer allowed, but
the lid will in general impart a pressure force to the fluid.



The rigid lid approximation

Suppose that this is P(x; y; t) is the pressure at the ocean surface. Then the horizontal
pressure gradient in the upper layer is :

Vpr=VP.
The pressure in the lower layer is given by hydrostasy:

pr=—p1gm + p2g{n1 —z)+ P
p18h — pag(h + z) + P,

Vp: =—g(ps—p1)Vh+ VP,

For zero gradient on p, the above takes the form: g(p2 —m)Vh =VP
Which gives the momentum equation:
Du

e + f xu=—g;Vh.

In the above £ = &(P2— p1)/P1  which indicates that density difference between the two
layers is important.



MULTI-LAYER SHALLOW

WATER EQUATIONS //—\

Figure 3.4 The multi-
layer shallow water sys-
tem. The layers are num-
bered from the top down.
The coordinates of the in-
terfaces are denoted 7,
and the layer thicknesses
h,sothath; =n; —nj—1.

We now consider multiple layers of fluid stacked on top of each other.

This is a crude representation of continuous stratification, but it turns out to be a powerful
model of many geophysically interesting phenomena. The pressure IS continuous across
the interface, but the density jumps discontinuously and this allows the horizontal velocity
to have a corresponding discontinuity.



Pressure is given by the hydrostatic approximation. Anywhere the can be find by
integrating down from the top.

At a height z in the first layer we have: P1 = P1&(1o — z),

and in the following layer  p, = pig(no — m) + p2g (1 — 2) = p1gno + pogim — P28z,

With H; = g(p2 = p1)/P1 _Such a reasoning can be extended into next layers:

n—1
Pn = p1)_ &ini,
=0

where g; = g(pi+1 — pi)/p1 (taking po = 0).
The above can be written in terms of the Iayer thlcknesses

Mn = Np + Z I .

i=n-+1

The momentum equation for each layer may then be written, in general,
Du,
+ f xuy, =——Vpy
D1 Pn

Finally, the mass conservation equation for each layer has the same form as the single-
layer case, and is
Dh,,

+ h,V -u,, = 0.
Df H M




The two-layer model is the simplest model to capture the effects of stratification.

H> ho Pa: Ur Py

Ny

A fluid of density p1l lies over a denser fluid of density p2 . In the reduced gravity case the
lower layer may be arbitrarily thick and is assumed stationary and so has no horizontal
pressure gradient. In the ‘rigid-lid’ approximation the top surface displacement is
neglected, but there is then a non-zero pressure gradient induced by the lid.

pr=pgno =p12hy + ha + np)
p2 = pilgno + gimil = p1 [g(hy + ha + np) + g4 (hy + 1p)] .



The momentum equations for the two layers are then:

Du
[}_f] + f xuy = —gVno = —gVih, + ha + ng)

In the top layer and

Du-» 21
==+ f xup = -P—E(g?nu +g1Vin)
1 !
= —p—z[ V(m, + ."Il -|-hg:| -+ g]vihg + ?’H;]]

In the bottom one. 2 In the Boussinesq approximation pl = p2 is replaced by unity.

In a three layer model the dynamical pressures are found to be

p1 = p1gh
P2 = Py [g.".i + gy (ha + hs + r;rb}]
p3 = p1|gh+ g\ (ha+ hs + np) + g5(hs + mp)].

where h = o = np + h1 + ha + h; and g; = g(p3s — p2)/p1.



Reduced-gravity multi-layer

Is a useful model of the stratified upper ocean overlying a nearly stationary and nearly
unstratified abyss. If we suppose there is a lid at the top, then the model is almost the
same as previous. However, now the horizontal pressure gradient in the lowest model
layer is zero, and so we may obtain the pressures in all the active layers by integrating
the hydrostatic equation upwards from this layer. The dynamic pressure in the n’th layer is
given by

i=N
pn=— Y PLEIM; g; = g(pi+1 — pi)/p1.
I=n
i=n

Having rigid lid on the top: 5, = — Z h;

i=1

one can easily get momentum equation in each layer.

Geostrophy and thermal wind.
When the Rossby number U /f L is small the Coriolis term dominates the advective terms.
In the single-layer shallow water equations:

f xug =—Vn

and the geostrophic velocity is proportional to the slope of the surface,



In both the single-layer and multi-layer case, the slope of an interfacial surface is directly
related to the difference in pressure gradient on either side and so, by geostrophic
balance, to the shear of the flow. This is the shallow water analog of the thermal wind

relation.

Consider the interface, n, between two layers 1 and 2. The pressure in two layers is given by
the hydrostatic relation and so,

pr=A(x,y)—p1g:z (at some z in layer 1) (3.57a)
p2 = A(x,y) — p1gn + p28(n — 2)
= A(x,y) + mgi N — P28z (at some z in layer 2) (3.57b)
where A(x, y) is the pressure where z = 0, but we don’t need to specifiy where this is.

Thus we find l
P—‘F(p, — p2) = —g, V. (3.58)
1
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Fig. 3.6 Geostrophic flow in a shallow water system, with a positive value
of the Coriolis parameter f, as in the Northern hemisphere. The pressure
force is directed down the gradient of the height field, and this can be
balanced by the Coriolis force if the fluid velocity is at right angles to it. If
| were negative, the geostrophic flow would be reversed.



[f the flow 1s geostrophically balanced and Boussinesq then, in each layer, the velocity
obeys

fu; = Lk x V p;. (3.59)
21
Using then gives
fluy —uz) =—-kxg Vn, (3.60)
or in general
f(un—uns1) =k x g, V. (3.61)

This is the thermal wind equation for the shallow water system. It implies the shear is
proportional to the interface slope,

Imagine the atmosphere as two layers of fluid with a meridionally decreasing temperature
represented by an interface that slopes upward toward the pole dn/dy = 0.
In the Northern hemisphere f is positive and we have:

g1 0dn

—— >0,
foay

] — Uy =

Indicating that such temperature gradient is associated with a positive shear.



FORM DRAG

When the interface between two layers varies with position the layers exert a pressure
force on each other. If the bottom is not flat then the topography and the bottom layer
can exert forces on each other. This is known as form drag, influencing momentum of
the flow.

Consider a layer confined between two interfaces, nl(x,y) and n2(x,y). Over some zonal
interval L the average zonal pressure force on fluid is:

l X2 rMLg
Fﬁ=—_f / P 4x dz.
Lodsy s ax
ap 1M
F; = m—f [ ] dx
R dx

dp d pa i a
';fl Yomg f 11 T2
X

‘_-IFI i P 7
dx dx dx

To obtain the second line we suppose that the integral is around a closed path, such as
a circle of latitude, and the average is denoted with an overbar.



These terms represent the transfer of momentum from one layer to the next, and at a
particular interface, i, we may define the form drag:

an; d p;
M = Pig =l
dx

: A
dx

The form drag is a stress, and as the layer depth shrinks to zero its vertical derivative is
the force on the fluid.

It is a mechanism for the vertical transfer of momentum .

Three Tree Point Form Drag Experiment

E tidal forcing ;

The purpose of the Three Tree Point Experiment is to
measure the pressure drop over a topographic feature

50

= 00 RO 8 caused by the currents flowing over top of it. We have
s i i>9l developed special sensors to measure the force that a ridge
150 el can exert on the overlying flow, known as “form drag.” Our

Bl  Oobjective is to relate this force to other variables we can
easily measure, such as the tidal strength and the density
structure in Puget Sound. Three Tree Point represents an
ideal natural geophysical laboratory for us to conduct these
Important experiments because the tidal currents are

predictable and deviations from them can be associated with
form drag.

http://mixing.coas.oregonstate.edu/threetree/Three_Tree_Point/Overview.html
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CONSERVATION PROPERTIES OF SHALLOW WATER SYSTEMS

A material invariant: potential vorticity
The vorticity of a fluid is the curl of the velocity field:

w =V XxXuv

Define shallow water vorticity as the curl of the horizontal velocity

du/dz = dv/dz = 0

W = k(dv — fj”) == ké‘
dx  dy

®

1
x*

Two types of two-

= y BT \
dimensional flow: _—— % — Qﬁ\
(a) linear shear flow with N %  — %
vorticity e W

(o}

(b) curved flow with zero

vorticity. (b)




Using the vector identity

(- V)u = ;?(u-u)—ux[?xﬂ].

we write the momentum equation Du as:
—+ [ xu=—gV
D7 f gvn
auXY® V(gh + ~u?)
et w XN = — 1 —H ).
Y ST

To obtain an evolution equation for the vorticity we take the curl of this momentum
equation and use vector identity:
Vx(w* xu)=(u-Vio* — (0" -Vu+&@*V-u—uV -0
=u- Vo +w"V-u,
Obtaining Jw*

4

dt

+(u- Vo = - "V -u,

Knowingthat ¢ = k- @™ one may write above as:

¥+(H-W)C=-—€?-u.

'

{



The mass conservation equation may be written as:

Using the last form of the momentum equation and the above one gets

D¢ ¢ Dh
Dt hD:t’

E(E) -y
Dr \ 1

This is the POTENTIAL VORTICITY conservation law, and {/h, the potential vorticity is often

denoted as Q.

Because O is conserved on parcels, then so is any function of Q; that is, F(Q) is

a material invariant, where F 1s any function. To see this algebraically, multiply

by F'(Q), the derivative of F with respect to O, giving

F' DQ—DF = ()
{Q]E—E{Ql—-

Since F is arbitrary there are an infinite number of Lagrangian invariants corresponding

to different choices of F'.



Effects of rotation
In a rotating frame of reference, the shallow water momentum equation is

Du

— 4+ fxu=-—-2Vh,
—~ f E

which may be written in a vector invariant form as

0 1
% + (@ 4+ f)xu=—-V(gh+ Euz).
(

taking the curl of this gives the vorticity equation:

d
f+ﬂrm@+ﬂ=-u+ov«.

The above is simply the equation of motion for the total or absolute vorticity:

0i=0"+ f =+ Nk

Combining it with the mass conservation gives potential vorticity in rotating coordinate

frame: :
D 4+ f N _ i
D.f( h ) =0 Q - {§.+'f]fh
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Fig. 4.8 Absolute vorticity conservation for curved flow trajectories.

Consider flow of constant depth, What are chanhes if planeray vorticity (Coriolis
parameter) when changing latitude?

Westerly flows cannot turn without forcing, they are stable!



Vorticity and circulation

Vorticity itself is not a material invariant, its integral over a horizontal material area is.
Consider the integral (non-rotating case):

C=/ {dA =j OhdA,
A A

Taking the material derivative of this gives

f—f?dA—{-LQg(J’fdA}.

The first term is zero, the second term is just the derivative of the volume of a column of fluid
and it too is zero, by mass conservation. Thus,

Dt fgdfl

Which means that the integral of the vorticity over a some cross-sectional area of the fluid
IS unchanging, although both the vorticity and area of the fluid may individually change.
Using Stokes’ theorem, it may be written

DC D
= 96 u - dl
Dt D¢




B 7 i D
— == —9§u-df
Dt Dt

The above is a Kelvin circulation theorem.

Potential vorticity in the atmosphere (from Holton's book):

The potential vorticity conservation for the adiabatic atmosphere can be written as:

| a0
P=(ty+ f)| —g— | = Const
dp

8 + 58

o, 8p

il

Fig. 4.7 A cylindrical column of air moving adiabatically, conserving potential vorticity.




(b)

4.9 Schematic view of westerly flow over a topographic barrier: (a) the depth of a fluid column
as a function of x and (b) the trajectory of a parcel in the (x, y) plane.
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Fig. 4.10 As in Fig. 4.9, but for easterly flow.
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