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THE EARTH is illuminated by shortwave SOLAR radiation, which is partially
absorbed ( AQ,.) and partially reflected (not shown).

In (quasi) equilibrium energy of absorbed radiation AQ.is balanced by emission of
EARTH's radiation AQ_ in thermal infrared.
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Heating AQ>AQ_. - positive imbalance.
Cooling AQ_<AQ. - negative imbalance.

Radiative forcing: change of radiation fluxes
(from certain reference state)



~340 W/m?* (160 W/m?)

~0.1 W/m? << 160 W/m?

~0.04 W/m? << 160 W/m?




ENERGY IN CLIMATE SYSTEM
1. Solar energy flux = ¥4 of Solar constant
1/4*1362W/m*= 341W/m-.

2. Earth's surface albedo, mean =0.3, highly variable,
from 0.9 (fresh snow) to 0.07 (clean ocean).

3. Geothermal energy flux =0.092W/m~.

4. Heat flux from fossil fuel combustion =0.04W/m?.

BASIC PROPERTIES OF THE CLIMATE SYSTEM
1. Air: surface pressure =1000hPa (10m of water),
cp:1004J/kg*K.

2. Water: global average depth = 3000m, ¢ =4192J/kg*K.
Ground — only a shallow layer responding to radiative fluxes.
4. Greenhouse gases: H O, CO_, CH,, O_, many others.
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Greenhouse effect: a principle
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Energy balance of climate system. Units: W/m?.



http://www.climatechange2013.org/report/

Positive energy balance — temperature of the air at the surface increases.
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Ocean heat content

(a) Observation-based estimates
of annual global mean upper (0 to
700m) ocean heat content in ZJ (1
ZJ = 1021 Joules). Uncertainties
are shaded and plotted as
published (at the one standard
error level, except one standard
deviation for Levitus, with no
uncertainties provided for Smith).
Estimates are shifted to align for
2006-2010, 5 years that are

well measured by Argo, and then
plotted relative to the resulting
mean of all curves for 1971, the
starting year for trend calculations.

(b) Observation-based estimates
of annual 5-year running mean
global mean mid-depth (700 to
2000 m) ocean heat con-

tent in ZJ, one standard error
uncertainties shaded (see legend).

http://www.climatechange2013.org/report/
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Orbital forcing and system feedbacks In the course of ice
ages lead to remarkable radiative effects
(radiative forcing

Proxy reconstruction

Mode! based reconstruction A h a_S h e re a
different
meaning)

Friedrich et al. Sci. Adv. 2016; 2 : e1501923
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Forcings and feedbacks in climate system.

Climate forcings are the initial drivers of a climate shift.

SORCE/TIM TSI Reconstruction _

1362.0 Reconstruction bosed on NRLTSI2 (Coddington et al, BAMS, 2015)
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Examples: solar irradiance, changes in the planetary orbit,
anthropogenic or volcanic emissions of greenhouse gases.




Forcings and feedbacks in climate system.

Climate feedbacks are processes that change as a result of a
change in forcing, and cause additional climate change.

1980 18982 1984 1886 1988 1990 1992 1994 1906 1998 2000 2002 2004 b -4

Examples : ice-albedo feedback, water vapor feedback.



Feedbacks can be positive or negative.

Positive feedbacks, when exceeding thresholds, may lead to
rapid climate changes.

Initial Initial
cimate |
g " response

Initial Initial
cimate .
forcing

response

Response amplified

by

climate system

Response reduced
by
climate system

A Positive feedback B Negative feedback



CO2: feedback and forcing.

Latest CO2 reading
September 12, 2019
Ice-core data before 1958. Mauna Loa data after 1958.
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Evolution of human population and greenhouse gases over the past 10,000 years
1750-2010 CE
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The abrupt and simultaneous upward trajectories of human population and greenhouse gases after the start of
the Industrial Revolution (~1750), and the distinct acceleration after the start of the Green Revolution (~1950),
show that the Human System has become the primary driver of these gases and the changes in the Earth System.

Adapted from Fu & Li (2016), CC-BY, https://doi.org/10.1093/nsr/nww094,

A Mote S, et al. 2020.
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“Radiative
forcing” I.e.
changes in
radiative
fluxes since
1750:

GHG

— positive,
aerosols

— negative
others

— minor.

Radiative forcing relative to 1750 (W m~2)
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Global temperature anomalies up to 2300 for various emission scenarios (IPCC)
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Temperature Anomaly [°C]

Holocene and Anthropocene
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Average Global Suface Temperature
Difference to 1961-1990 (°C)

Very past and and near future climate
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Near past and and near future climate

Tipping elements possibly I ' RCP8.5

switched within Paris range
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Estimated possibility of reaching tipping points: yellow — possible, red — certain.

Schellnhuber et al. Nature Climate Change volume 6, pages 649—653 (2016)



TOO CLOSE FOR COMFORT

Abrupt and irreversible changes in the climate system have become a higher
risk at lower global average temperatures.

SR Level of risk

M Very high

B High

W Moderate
Low
Undetectable

Global average E%EI.II!_I%EMN"‘:_I_YHS
temperature:

~1°C above
pre-industrial
levels

We define emergency (E) as the product

of risk and urgency. Risk (R) is defined

by insurers as probability (p) multiplied

by damage (D). Urgency (U) is defined in
emergency situations as reaction time to
an alert (1) divided by the intervention time
left to avoid a bad outcome (T). Thus:

Global mean surface temperature (°C)

[ ] ' ' ~ _
2001 2007 2013 2018 E=RxU=pxDxt/T
Year of IPCC report S —

The situation is an emergency if both risk
and urgency are high. If reaction time

is longer than the intervention time left
(t/T>1), we have lost control.



Temperature

Stabilized /
Earth

Stability of the Earth
climate system

/ endangered
/f due to tipping points
cascade crossings?

Hothouse Earth
(millennia)

Glacial-Interglacial
Cycle (100,000 y)

Steffen et al., PNAS
August 14, 2018 115 (33)
8252-8259; https://doi.org/
10.1073/pnas.1810141115
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global biodiversity

Climate and biodiversity: co-extinctions
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Species either go extinct based only on their tolerance to environmental conditions
(‘environmental tolerance’ scenarios = blue curves), or where species go extinct not
only when unable to cope with changed environmental conditions, but also following
the depletion of their essential resources (‘co-extinction’ scenarios = magenta

curves)

Strona and Bradshaw, Scientific Reports, Vol, 8, Article number: 16724 (2018)




Roger R. Revelle and Hans E. Suess,

“Carbon Dioxide Exchange Between Atmosphere and Ocean and the Question of an Increase of
Atmospheric CO2 during the Past Decades,”

Tellus IX (1957), pp. 19-20.

“Thus human beings are now carrying out a large scale geophysical
experiment of a kind that could not have happened in the past nor be
reproduced in the future. Within a few centuries we are returning to the
atmosphere and oceans the concentrated organic carbon stored in
sedimentary rocks over hundreds of millions of years....”

SIXTY THREE YEARS AFTER
WE FACE THE FOLLOWING QUESTION:

Can we gain control on this experiment?



200 years of climate physics

- almost 200 years since term “greenhouse effect” was
iIntroduced and Earth's energy balance was considered a main
driver of climate,

- almost 150 years from first measurements of properties of
greenhouse gases,

- more than 100 years from the first calculations of temperature
effect of CO, doubling,

- over 55 years from formulation of first modern radiative
transfer / circulation models,

- over 25 years from successive applications of global climate
models...

-we talk and deliver the message but it is not enough to avoid
catastrophe.
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