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Reduced amount of carbon stable isotope 13C in plants depending on 
photosynthesis type.
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Fig. 2. Climate states of 
the Cenozoic. Deep-
sea benthic foraminifer 
high-resolution carbon 
(A) and oxygen (B) 
isotope records and the 
respective recurrence 
plots as
well as scatterplots of 
long-term benthic 
foraminifer carbon 
versus oxygen values
(C) and oxygen values 
versus atmospheric 
CO2 concentrations 
(D). 



https://websites.pmc.ucsc.edu/~jzachos/images/CENOGRID_Cartoon_withProjection_alternate.png



https://www.ipcc.ch/report/ar6/wg1/figures/technical-summary

https://www.ipcc.ch/report/ar6/wg1/figures/technical-summary


Fig. 4. The relationship between Phanerozoic 
temperature and atmospheric CO2. 

(A) PhanDA GMST (top) and reconstructed 
atmospheric CO2 (bottom), resolved at the stage level. 
The CO2 reconstruction (29) is largely based on the 
data from Foster et al. (2017) (78) in the Paleozoic and 
Mesozoic, and the data from Rae et al. (2021) (80) in 
the Cenozoic. Shading reflects percentiles. 

(B) PhanDA GMST versus CO2, color-coded by 
geologic era. The York regression (86), which accounts 
for uncertainty in both the predictor and response 
variables, is shown by the black dashed line. 

(C) CO2 ranges for each of the climate states defined 
in Fig. 3. Light and dark bands show the 5th to 95th 
and 16th to 84th percentiles, respectively. The thick 
solid line shows the median value, and the dashed line 
shows the median, excluding data from the Mesozoic, 
where CO2 is more uncertain.

https://www.science.org/doi/10.1126/science.adk3705#core-R29
https://www.science.org/doi/10.1126/science.adk3705#core-R78
https://www.science.org/doi/10.1126/science.adk3705#core-R80
https://www.science.org/doi/10.1126/science.adk3705#core-R86
https://www.science.org/doi/10.1126/science.adk3705#F3


Key Points
•Long-term (> 10s of millions of years to 4.6Gyr) climate history 
information can come from geology.
•Oxygen isotopes (18O) from carbonate (CaCO3) can be used as a 
paleotemperature proxy.
•Can also use similar techniques to measure ancient carbon 
dioxide levels.
•Earth has only had polar ice for ~15% of its history; frequently 
there is sufficient equator-to-pole heat transport to allow palm trees 
at the poles.
•Specific example:  Snowball Earth, when Earth froze over 600 Myr 
ago.
•Snowball Earths are reversed by build up of carbon dioxide, and 
are followed by global hothouses when the ice melts.
•Earth’s climate history is a total roller coaster on 10 million year to 
billion year timescales.



Abrupt Climate Change – example: PETM

The Palaeocene-Eocene Thermal Maximum as 
recorded in benthic (bottom dwelling) foraminifer 
(Nuttallides truempyi) isotopic records from sites 
in the Antarctic, south Atlantic and Pacific (see 
Zachos et al., 2003 for details). The rapid 
decrease in carbon isotope ratios in the top 
panel is indicative of a large increase in 
atmospheric greenhouse gases CO2 and CH4 
that was coincident with an approximately 5°C 
global warming (centre panel). Using the carbon 
isotope records, numerical models show that 
CH4 released by the rapid decomposition of 
marine hydrates might have been a major 
component (~2,000 GtC) of the carbon flux 
(Dickens and Owen, 1996). 

IPCC 2007



Comparison of NH ice-sheet extent during the last glacial cycle and MIS 6. 

a shows a comparison of the reconstructed ice-sheet extent during the LGM and MIS 4. 

The orange fill shows areas that were covered by ice sheets during both the LGM and MIS 4. 

b shows a comparison of the reconstructed geographical maximum ice-sheet extent during the last glacial cycle (MIS 2–5d) and MIS 6. The purple fill shows areas that were 
covered by ice sheets during both the last glacial cycle (LGC) and MIS 6. Background is ETOPO1 1 arc-minute global relief model of the Earth’s surface72

MIS - marine Isotopic 
Stages, 
minima of δ18O

https://www.nature.com/articles/s41467-019-11601-2#ref-CR72




Carbon in climate system

(IPCC 2021)





Antropogenic
vs. volcanic 
CO

2
 

emissions.

Gerlach, T. (2011): "Volcanic 
Versus Anthropogenic Carbon 
Dioxide", EOS, Trans. AGU, 
92:24, 201-208



Fossil fuels are not 
naturally a part of the fast 
cycle: every ton emitted 
changes the carbon cycle 
for thousands of years



The last two + volcanic emissions + coal/oil/gas formation from organic carbon 
 = slow carbon cycle



Timescales of carbon removal.
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 in climate system
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O in climate system



Geology is the science of how the Earth functions and has evolved and, as such, it can contribute to our 
understanding of the climate systemand how it responds to the addition of carbon dioxide (CO2) to the
atmosphere and oceans. Observations from the geological record show that atmospheric CO2 concentrations are now 
at their highest levels in at least the past 3 million years. Furthermore, the current speed of human-induced CO2 
change and warming is nearly without precedent in the entire geological record, with the only known exception being
the instantaneous, meteorite-induced event that caused the extinction of non-bird-like dinosaurs 66 million years ago. 
In short, whilst atmospheric CO2 concentrations have varied dramatically during the geological past due to natural 
processes, and have often been higher than today, the current rate of CO2 (and therefore temperature) change
is unprecedented in almost the entire geological past.
The geological record shows that changes in temperature and greenhouse gas concentrations have direct impacts on 
sea-level, the hydrological cycle, marine and terrestrial ecosystems, and the acidification and oxygen depletion of the 
oceans…

The geological record provides powerful evidence that atmospheric CO2 concentrations drive climate change, and 
supports multiple lines of evidence that greenhouse gases emitted by human activities are altering the Earth’s climate. 
Moreover, the amount of anthropogenic greenhouse gases already in the atmosphere means that Earth is
committed to a certain degree of warming. As the Earth’s climate changes due to the burning of fossil fuels and 
changes in land-use, the planet we live on will experience further changes that will have increasingly drastic effects on 
human societies. An assessment of past climate changes helps to inform policy decisions regarding future
climate change. Earth scientists will also have an important role to play in the delivery of any policies aimed at limiting 
future climate change



Summary:

Modern paleoclimatology is based on physical/chemical/biological analysis of past 
climate footprints present in sediments and remnants from the past.
Paleoclimatology gives insight into past climates.

Paleoclimatological analysis increases our understanding of climate forcings and 
feedbacks, affecting distortions of carbon cycle and other biogeochemical cycles.

Alterations of carbon cycle and changes within this cycle due to feedbacks in climate 
system are explaining climate variability in last ~500 millions of years.
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Geological Society of London Scientific Statement: what the
geological record tells us about our present and future climate
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FAQ 6.2, Figure 2 | Decay of a CO; excess amount of 5000 PgC emitted at time ero into the atmosphere, and its subsequent redistribution into land and ocean
as a function of time, computed by coupled carbon-cycle climate models. The sizes of the colour bands indicate the carbon uptake by the respective reservoir. The first
two panels show the multi-model mean from a model intercomparison project (Joos et al, 2013). The last panel shows the longer term redistribution including ocean
dissolution of carbonaceous sediments as computed with an Earth System Model of Intermediate Complexity (after Archer et al, 2009b).




Box 6.1, Table 1 | The main natural processes that remove CO, consecutive to a large emission pulse to the atmosphere,
their atmospheric CO, adjustment time scales, and main (bio)chemical reactions involved.

Processes Time scale (years) | Reactions

Land uptake: Photosynthesis-respiration 1-10? 6C0, + 6H,0 + photons — C¢H;,04 + 60,
CgH,,06 + 60, — 6CO, + 6H,0 + heat

Ocean invasion: Seawater buffer 10-10° CO, + C0s* + H,0 < 2HCO;

Reaction with calcium carbonate 103-10% CO, + CaCo; + H,0 — CaZ* + 2HCO;

Silicate weathering 104108 C0, + CaSi0; — CaCo, + Si0,





Fossil fuel

‘Speed of exchange processes
- Very fast (Less than 1 year)

- Fast (110 10 years)
£ [ Slow (1010 100 years)
B o= Very slow (more than 100 years)
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Isotope systematics in the hydrological cycle:

The isotope composition of natural meteoric waters (which form the main

reservoirs of freshwater on earth, ice caps, lakes, rivers and
groundwater) is determined by three main factors.

1) The isotopic composition of the source of the moisture i.e. the
ocean, the largest water reservoir on earth.

2) Processes of fractionation during evaporation from the ocean.

3) Fractionation processes during condensation in the cloud and
precipitation to the ground.




TABLE 3-1 Radioactive Decay Used fo Date Climate Records

Parent
isotope

Rubidium-87
(87Rb)

Uranium-238
U

Uranium-235
@0)

Potassium-40
(4()K>

Thorium 230
('Th)

Carbon-14
(14(:)

Daughter
isotope

Strontium-87
(87Sr>

Lead-206
(295Pb)

Lead-207
(Y7Pb)

Argon-40
(*Ar)

Radon-226*
(26Ra)

Nitrogen-14*
("N)

Half-life

47 Byr
4.5 Byr
0.7 Byr
1.3 Byr
75,000 years

5,780 years

*Daughter is a gas that has escaped and cannot be measured.

Useful
for ages:

100 Myr

>100 Myr
>100 Myr
>100,000 years
<400,000 years

<50,000 years

Useful
for dating:

Granites
Many rocks
Many rocks
Basalts
Corals

Anything that
contains carbon
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380 signal in different climate archives
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5 Present day volcanic carbon flux estimates

Terrestrial volcanism occurs within both the hydrosphere and atmosphere. Submarine and
subaerial volcanism originate almost entirely within different tectonic environments (as outlined
above), tapping different, although not entirely exclusive volatile sources, shown schematically
in Figure 2, below.
INTRAPLATE VOLCANISM  pESTRUCTIVE
CONSTRUCTIVE MARGIN (mW’ ‘“‘:::‘:f:rf'"

Mid-ocean ridge volcanism:
i mmnu1uum

Tectonic plate
(iithosphere)

at base

upper mantle material

Figure 2. Diagrammatic representation of the different volcanic environments with estimates of CO, emission rates
and their relationship to plate tectonic environment.
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		Changes in atmospheric composition 





















Paleolclimatic data



Dating methods

 1.1 Radiometric dating

 1.2 Fission-track dating

 1.3 Cosmogenic nuclide geochronology

 1.4 Luminescence dating

 1.5 Incremental dating

 1.6 Paleomagnetic dating

 1.7 Magnetostratigraphy

 1.8 Chemostratigraphy

 1.9 Correlation of marker horizons





Radiometric dating 







In this table, we show radioactive decay series used to date climate records. Each radioactive decay series has its own application, according to its half live and its abundance in the proxy.





















Reduced amount of carbon stable isotope 13C in plants depending on photosynthesis type.









Westerhold, T., N Marwan, AJ Drury, D Liebrand, C Agnini, E Anagnostou, JSK Barnet, SM Bohaty, D Vleeschouwer, F Florindo, T Frederichs, DA Hodell, AE Holbourn, D Kroon, V Lauretano, K Littler, LJ Lourens, M Lyle, H Pälike, U Röhl, J Tian, RH Wilkens, PA Wilson, JC Zachos, 2020, An astronomically dated record of Earth’s climate and its predictability over the last 66 Million Years, Science, v. 369, Issue 6509, pp. 1383-1387. DOI: 10.1126/science.aba6853









Fig. 2. Climate states of the Cenozoic. Deep-sea benthic foraminifer high-resolution carbon (A) and oxygen (B) isotope records and the respective recurrence plots as

well as scatterplots of long-term benthic foraminifer carbon versus oxygen values

(C) and oxygen values versus atmospheric CO2 concentrations (D). 









https://websites.pmc.ucsc.edu/~jzachos/images/CENOGRID_Cartoon_withProjection_alternate.png
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Fig. 4. The relationship between Phanerozoic temperature and atmospheric CO2. 

(A) PhanDA GMST (top) and reconstructed atmospheric CO2 (bottom), resolved at the stage level. The CO2 reconstruction (29) is largely based on the data from Foster et al. (2017) (78) in the Paleozoic and Mesozoic, and the data from Rae et al. (2021) (80) in the Cenozoic. Shading reflects percentiles. 

(B) PhanDA GMST versus CO2, color-coded by geologic era. The York regression (86), which accounts for uncertainty in both the predictor and response variables, is shown by the black dashed line. 

(C) CO2 ranges for each of the climate states defined in Fig. 3. Light and dark bands show the 5th to 95th and 16th to 84th percentiles, respectively. The thick solid line shows the median value, and the dashed line shows the median, excluding data from the Mesozoic, where CO2 is more uncertain.





Key Points



		Long-term (> 10s of millions of years to 4.6Gyr) climate history information can come from geology.



		Oxygen isotopes (18O) from carbonate (CaCO3) can be used as a paleotemperature proxy.



		Can also use similar techniques to measure ancient carbon dioxide levels.



		Earth has only had polar ice for ~15% of its history; frequently there is sufficient equator-to-pole heat transport to allow palm trees at the poles.



		Specific example:  Snowball Earth, when Earth froze over 600 Myr ago.



		Snowball Earths are reversed by build up of carbon dioxide, and are followed by global hothouses when the ice melts.



		Earth’s climate history is a total roller coaster on 10 million year to billion year timescales.









Abrupt Climate Change – example: PETM





The Palaeocene-Eocene Thermal Maximum as recorded in benthic (bottom dwelling) foraminifer (Nuttallides truempyi) isotopic records from sites in the Antarctic, south Atlantic and Pacific (see Zachos et al., 2003 for details). The rapid decrease in carbon isotope ratios in the top panel is indicative of a large increase in atmospheric greenhouse gases CO2 and CH4 that was coincident with an approximately 5°C global warming (centre panel). Using the carbon isotope records, numerical models show that CH4 released by the rapid decomposition of marine hydrates might have been a major component (~2,000 GtC) of the carbon flux (Dickens and Owen, 1996). 
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Comparison of NH ice-sheet extent during the last glacial cycle and MIS 6. 

a shows a comparison of the reconstructed ice-sheet extent during the LGM and MIS 4. 

The orange fill shows areas that were covered by ice sheets during both the LGM and MIS 4. 

b shows a comparison of the reconstructed geographical maximum ice-sheet extent during the last glacial cycle (MIS 2–5d) and MIS 6. The purple fill shows areas that were covered by ice sheets during both the last glacial cycle (LGC) and MIS 6. Background is ETOPO1 1 arc-minute global relief model of the Earth’s surface72





MIS - marine Isotopic Stages, 

minima of δ18O
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Antropogenic

		vs. volcanic 

CO2 

emissions.





Gerlach, T. (2011): "Volcanic Versus Anthropogenic Carbon Dioxide", EOS, Trans. AGU, 92:24, 201-208







Fossil fuels are not naturally a part of the fast cycle: every ton emitted changes the carbon cycle for thousands of years









The last two + volcanic emissions + coal/oil/gas formation from organic carbon  = slow carbon cycle





Timescales of carbon removal.

















CH4 in climate system











N2O in climate system







Geology is the science of how the Earth functions and has evolved and, as such, it can contribute to our understanding of the climate systemand how it responds to the addition of carbon dioxide (CO2) to the

atmosphere and oceans. Observations from the geological record show that atmospheric CO2 concentrations are now at their highest levels in at least the past 3 million years. Furthermore, the current speed of human-induced CO2 change and warming is nearly without precedent in the entire geological record, with the only known exception being

the instantaneous, meteorite-induced event that caused the extinction of non-bird-like dinosaurs 66 million years ago. In short, whilst atmospheric CO2 concentrations have varied dramatically during the geological past due to natural processes, and have often been higher than today, the current rate of CO2 (and therefore temperature) change

is unprecedented in almost the entire geological past.

The geological record shows that changes in temperature and greenhouse gas concentrations have direct impacts on sea-level, the hydrological cycle, marine and terrestrial ecosystems, and the acidification and oxygen depletion of the oceans…



The geological record provides powerful evidence that atmospheric CO2 concentrations drive climate change, and supports multiple lines of evidence that greenhouse gases emitted by human activities are altering the Earth’s climate. Moreover, the amount of anthropogenic greenhouse gases already in the atmosphere means that Earth is

committed to a certain degree of warming. As the Earth’s climate changes due to the burning of fossil fuels and changes in land-use, the planet we live on will experience further changes that will have increasingly drastic effects on human societies. An assessment of past climate changes helps to inform policy decisions regarding future

climate change. Earth scientists will also have an important role to play in the delivery of any policies aimed at limiting future climate change





Summary:



Modern paleoclimatology is based on physical/chemical/biological analysis of past climate footprints present in sediments and remnants from the past.

Paleoclimatology gives insight into past climates.



Paleoclimatological analysis increases our understanding of climate forcings and feedbacks, affecting distortions of carbon cycle and other biogeochemical cycles.



Alterations of carbon cycle and changes within this cycle due to feedbacks in climate system are explaining climate variability in last ~500 millions of years.





































































































































































































































































































































































