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THE EARTH is illuminated by shortwave SOLAR radiation, which is partially
absorbed and partially reflected.

In (quasi) equilibrium energy of absorbed radiation is balanced by emission
in thermal infrared.

Deflections from the equilibrium result in climate system heating/cooling.



Effective temperature of the Earth
R- radius,

S- solar constant,

A- albedo,

— E. - absorbed solar energy:
o X E = (1-A)SniR°.
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Assume blackbody.

T, — emission temperature
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% E_ - emitted energy:
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For S=1362+1 W/m? and A=0.3 T_=254.81+0.05K
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Greenhouse effect — single layer model
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ENERGY IN CLIMATE SYSTEM
1. Solar energy flux = ¥4 of Solar constant
1/4*1362W/m*= 341W/m-.

2. Earth's surface albedo, mean =0.3, highly variable,
from 0.9 (fresh snow) to 0.07 (clean ocean).

3. Geothermal energy flux =0.092W/m~.

4. Heat flux from fossil fuel combustion =0.026W/m?.

BASIC PROPERTIES OF THE CLIMATE SYSTEM
1. Air: surface pressure =1000hPa (10m of water),
cp:1004J/kg*K.

2. Water: global average depth = 3000m, ¢ =4192J/kg*K.
Ground — only a shallow layer responding to radiative fluxes.
4. Greenhouse gases: H O, CO_, CH,, O_, many others.
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Forcings and feedbacks in climate system.

Climate forcings are the initial drivers of a climate shift.
Examples: solar irradiance, changes in the planetary orbit,
anthropogenic or volcanic emissions of greenhouse gases.

Climate feedbacks are processes that change as a result of a
change in forcing, and cause additional climate change.
Examples : ice-albedo feedback, CO2 solubility.

Feedbacks can be positive or negative.

Positive feedbacks, when exceeding thresholds, may lead to
rapid climate changes.

There are indications in paleoclimatological data that such
changes occurred in geological history of the planet.

http://www.ncdc.noaa.gov/paleo/paleo.html
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http://www.wmo.int/pages/themes/climate/climate_observation_networks_systems.php

World Meteorological Organization

Atmosphere: Over 11,000 weather stations, as W ki
satellites, ships and aircraft take measurements.

1040 of stations are selected to provide high quality climate data.
There are special networks at national (e.g. Reference Climate
Stations), regional (e.g. Regional Basic Climatological Network) and
global scales. (e.g. the Global Climate Observing System - GCOS -
etwork, GSN).
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Weather stations and buoys Upper air soundings

Voluntary ship observations Aircraft based observations


http://www.wmo.int/pages/themes/climate/climate_observation_networks_systems.php

OCEAN:

ARGO project: temperature and salinity profiling, deep sea currents.
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Thousands of automatic
profilers provide actual
data from the world
— ocean.
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About NASA's Earth Observing System

The Earth Observing System (EQ3) is a coordinated series of polar-orbiting and low inclination satelites for
leng-term global cbservations of the land surface, bicsphere, solid Earth, atmosphere, and oceans. EQ3
a major component of the Earth Science Division of NASAs Science Mission Directorate. EOS enables an
improved understanding of the Earth as an integrated system. The EQS Project Science Office (EOSPS0O)
is committed to bringing program information and resources to program scientists and the general public
alike.
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Satellites

¥

Satellites offer a wide variety of valuable services. These incude communications and weather
obsarvation, which are essentlal to modem life, as well as astronomical observation and space

! pment. Japanese now in orbit are performing missions in a wide range of areas.
For example, they have been playing an important role in assessing and analyzing abnormal
weather pattems. For the purpose of planetary exploration, plans are under way for sending probes.
to the Moon and Mars.
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Observations - summary
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https://www.ametsoc.org/index.cfm/ams/publications/bulletin-of-the-american-meteorological-society-bams/state-of-the-climate/

Sea level change
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Energy balance of climate system. Units: W/m®.

http://www.climatechange2013.org/report/



http://www.climatechange2013.org/report/

“Radiative
forcing” I.e.
changes in
radiative
fluxes since
1750:

GHG

— positive,
aerosols

— negative
others

— minor.

Radiative forcing relative to 1750 (W m~2)
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Fic. 2.46. (a) Direct radiative forcing (W m?) due to 5
major LLGHG and |5 minor gases (left axis) and the
associated values of the NOAA AGGI (right axis), and
(b) annual increase in direct radiative forcing (W m™2).
Solid black lines indicate that the AGGI had a value of
1.0 in 1990.

https://lwww.ametsoc.org/index.cfm/ams/publications/bulletin-of-the-american-meteorological-society-bams/state-of-the-climate/



Global Stations _
Carbon Dioxide Concentration Trends Regular observations of C02

Data from Scripps -:':D2 Program  Last updated October 2019
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Mauna Loa Observatory, Hawaii and South Pole, Antarctica
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Data from Scripps CO, Program  Last updated October 2019 Concentratlon ratlo 13C/12C a”OWS

" s | i to determine the role of fossil fuel
ol {h& s combustion in CO, concentration

M - Increase in the atmosphere and in
I the ocean.
-B.0—
-8.2—
-84
-8.6—
B8 e ress  1es0 1995 7000 2005 210 7015 2020

Year ) Mauna Loa, Hawaii Aspirated and Non-Aspirated ) _
.:::E | g; lllll T ;qié;(zim.llséw;m

Another signature of fossil fuel .
combustion S o AT
C+20=CO, . RN

Is the ratio of O_/N_ in air. RE

O_/N_ ratio [per meg]
%

Y| PYRTY FYYTAATEL FYRTY YUTY FARTL FYUTY YRS FTRT CYUNI (RRTICCCY:

<
Z.

L T o T L T e T T e I T Frr)
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 20001 2002 2003 2004 2005 2006 2007 2008 2009 2000 2011 2012 20013 2004 20015 20016 2017 2018 2009




(a) 180

160-
140-

—

M

o
!

100+

0-700 m OHCA (ZJ)

MRI/JJMA
CSIRO/ACE CRC/IMAS-UTAS

NCEI
Met Office Hadley Centre

= PMEL/JPL/JIMAR
w  |AP/CAS

Deep OHCA (ZJ)
M
l.'ZI'.'l o

1 i
B M
o o

i 1

I
(9]
o

- 7> 2000m

1995

2000

2005 2010 2015

Ocean heat content
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standard errors of the mean.

(b) Annual average global
integrals of in situ estimates of
intermediate (700-2000

m) OHCA for 1993-2018 with
standard errors of the

mean, and a long-term trend
with one standard error
uncertainty shown from 1992—
2010 for deep and abys.

https://www.ametsoc.org/index.cfm/ams/publications/bulletin-of-the-american-meteorological-society-bams/state-of-the-climate/
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Climate modeling: a virtual planet

geophysical fluid dynamics
thermodynamics

radiative transfer

e chemistry equations

“**" boundary conditions

Horizontal grid
Latituda - longifuda I

Vertical grid

Height or pressure

Physical processes in a model
Atmosphera

model e(ilations

dezonal pumerical code
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virtual reality allowing for
simulating climate



The development of climate models over the last 35 years
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http://www.climatechange2013.org/report/
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Predictability of weather and climate

Edward N. Lorenz (1917-2008):

Selected papers:

,Deterministic nonperiodic flow”, 1963
(sensitivity of solutions to initial conditions: “butterfly effect”, a well defined
attractor)

,1he problem of deducing the climate from the governing equations”, 1964
(long term predictability — obcertainties in the governing equations)

,Climatic change as a mathematical problem”, 1970
(unpredictable weather does not mean that climate is not predictable)

,Predictability — a problem partly solved”, 2006



Predictability of weather and climate — illustration:
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Multimodel
ensemble
validations:

Observed and
simulated time
series of the
anomalies in annual
and global mean

surface tem perature.

All anomalies are
differences from the
1961-1990 time-
mean

of each individual
time series.

(a) the global mean
surface temperature
for the reference
period 1961-1990,
for each individual
model (colours), the
CMIP5 multi-model
mean (thick red),
and the
observations (thick
black).

(b) available EMIC
simulations (thin
lines),

http://www.climatechange2013.org/report/

Temperature Anomaly (°C)

Temperature Anomaly (°C)

(a) Observed and CMIP5 simulated global mean surface air temperature
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http://www.climatechange2013.org/report/

Model validations:

Annual-mean cloud
radiative effects of the
CMIP5 models compared
against the measurements
(CERES

EBAF 2.6) data set (in W m™~
% top row: shortwave effect;
middle row: longwave
effect; bottom row: net
effect).

On the left are the global
distributions of the multi-
model-mean

biases, and on the right are
the zonal averages of the
cloud radiative effects from
observations.

Model results are for the
period 1985-2005, while
the available CERES data
are for 2001-2011.

http://www.climatechange2013.org/report/
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Model ensembles vs. observations.
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Arguments, that climate model provide valuable information:

1) the models can reproduce the current climate;

2) the models can reproduce the recent observed trends as well as
the more distant past;

3) the models are based on physical principles;

4) there is a hierarchy of the models from the simplest ones to most
complicated, which allows for understanding and interpretation
many of the results;

5) the value of simulations is increased where multiple models are
available, since they indicate which changes are more certain than

others.

Knutti, R., 2008: Should we believe model predictions of future climate change?doi: 10.1098/rsta.2008.0169
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Anthropogenic and natural warming inferred from
changes in Earth's energy balance

Markus Huber and Reto Knutti*

Here we present an alternative attribution method that relies on the principle of conservation of
energy, without assumptions about spatial warming patterns.

Based on a massive ensemble of simulations with an intermediate-complexity climate model we
demonstrate that known changes in the global energy balance and in radiative forcing tightly
constrain the magnitude of anthropogenic warming.

We find that since the mid-twentieth century, greenhouse gases contributed 0.85 - C of warming
(5-95% uncertainty: 0.6—-1.1 - C), about half of which was offset by the cooling effects of
aerosols, with a total observed change in global temperature of about 0.56 - C.

The observed trends are extremely unlikely (<5%) to be caused by internal variability, even if
current models were found to strongly underestimate fit.

Our method is complementary to optimal fingerprinting attribution and produces fully consistent
results, thus suggesting an even higher confidence that human-induced causes dominate the
observed warming.
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Figure 3 | Contributions of different forcing agents to the total observed temperature change. a, Time series of anthropogenic and natural forcings
contributions to total simulated and observed global temperature change. The coloured shadings denote the 5-95% uncertainty range. b-d, Contributions
of individual forcing agents to the total decadal temperature change for three time periods. Error bars denote the 5-95% uncertainty range. The grey
shading shows the estimated 5-95% range for internal variability based on the CMIP3 climate models. Observations are shown as dashed lines.
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