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TKE changes only by viscous dissipation. Of course this in unsustainable - a source
of kinetic energy is needed. TKE sources (shear production, buoyant production) are
NOT 1sotropic and homogeneous. We sidestep this contradiction by assuming that
for large Reynolds numbers, although 1sotropy and homogeneity are violated by the
mechanism producing the turbulence, they still hold at small scales and away from
boundaries. Then the turbulence production can be represented simply bv a forcing
term F', assumed to be 1sotropic and homogeneous:

d
—F=—¢+F 4.4
= € + (4.4)

TKE production
TKE changes TKE dissipation

In stationary turbulence production is balanced by dissipation



Kotmogorov (1941) therory of uniform isotropic and stationary turbulence
- after Frisch(1990):

The Navier—-Stokes equations for incompressible fluid flow possess a number of
symmetries (invariance groups). When boundaries are ignored, the symmetries
include : space and time translations, rotations, parity (space and velocity reversal)
and galilean transformations. If the viscosity v = 0, an infinite class of additional
symmetries appears, the scaling transformations:

r—>Ar, v—>Av, t—->A"", AeR,. (1)

Here, t, r and v are, respectively, the time, position and velocity variables. 1t is
assumed that pressure has been eliminated from the Navier—Stokes equation through
use of the incompressibility constraint. The different scaling groups are labelled by
the scaling exponent /e R. ( )

I shall present the reformulation in the form of numbered hypotheses.

H1. In the limit of infinite Reynolds numbers, all the possible symmetries of the
Navier—Stokes equation, usually broken by the mechanisms producing the turbulent flow,
are restored in a statistical sense at small scales and away from boundaries.

The words ‘small scales” can be technically defined by considering velocity
increments over a distance ! small compared to the integral scale(l,:
velocity differences on a distance / So(r.1) = v(r+1)— v(r). (2)

We may then define, for example, statistical invariance under space-translations
(homogeneity) by :
ov(r+gq.,l) ="0dv(r,l), q<l,, (3)

where =% means ‘equality in law’ (identical statistical properties).



Since there is an infinity of different possible scaling exponents %, additional
assumptions are needed.

H2. Under the same assumptions as in H1, the turbulent flow is assumed to be self-
stmelar at small scales, i.e. to possess a single scaling exponent h.

The value of % is obtained from

H3. Under the same assumptions as in HI, the turbulent flow is assumed to have
a finite non-vanishing mean rate of dissipation € per unit mass.t

From H2 and H3, the value of the scaling exponent can be readily obtained.
Indeed, Kolmogorov (1941¢) has derived the following relation from the Navier—
Stokes equation, under the sole assumptions of homogeneity, isotropy and finite

mean energy dissipation : .
2y p 3rd order structure function

Sy(l) = {(Bv,(r, 1)? ) = — 1], (4)

Here, ov, denotes the component of the velomt}r increment parallel to the
displacement vector [. The function S, is called the third order (longitudinal)
structure function. The increment / is assumed by Kolmogorov to be small compared
to the integral scale [,. With the assumption H2, under rescaling of the increment [
by a factor A, the left-hand side of (4) changes by a factor A3 while the right-hand
side changes by a factor A. Hence,

h=1 (5)
4

\ universal exponent



Under the assumption that moments of arbitrary integer order p of the velocity
increment exist (there is considerable experimental evidence for this assumption),
the self-similarity hypothesis implies scaling laws for structure functions of arbitrary
order: o

S,(l) = {Ovy(r,)?) = U, e [P, (6)
The presence of the factors ¢ in the right-hand side ensures that the C,s are
dimensionless. The (' s cannot depend on the Reynolds number, since the limit of
infinite Reynolds number is assumed. For p = 3, it follows from (4) that €, = —%,
which is clearly universal. All the U' s, except for p = 3, must, however, depend on
the detailed geometry of the production of turbulence. In other words, they cannot
be universal.

Notice that for p=2 this is the 2nd order structure function, dimension velocity squared
e.g. equivalent to turbulent kinetic energy per unit mass!!!,

Thus, 2nd order structure fuction can be interpreted in terms of energy, and the whole

eq. (6) as relation (dependency) of TKE on scale /, on condition that the scale is
substantially smaller than the integral scale /,.

In the other words: TKE in scale [ is proportional to this scale in power 2/3.



Goettingen turbulence facility:

GTF3 generates high Reynolds
number turbulent water flows
between two counter-rotating baffled
disks. Large glass windows provide
access for LPT or PIV
measurements.

Signal processor  Laser Fotating grids

D Camemn

Lenses

Oshima Lab, Tokyo:
Generation of nearly isotropic
homogeneous turbulence using
rotating grids

,

MNd: YA laser bularmor
Md: YAG laser controller
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The probability density functions, of differences of velocity fluctuations, obtained in atmospheric
turbulence about 30 m above the ground. The ordinate is logarithmic in the main figure and
linear in the inset. Each curve is for a different separation distance (using Taylor’s hypothesis).
The smallest separation distance (about 2.5 mm) is only five times the Kolmogorov scale,

while the largest (about 50 m) is comparable to the height of the measurement point. For small
separation distances, very large excursions (even as large as 25 standard deviations) occur
with nontrivial frequency; they are far more frequent than is given by a Gaussian distribution
(shown by the full line), which is approached only for large separation distances. Extended tails
over a wide range of scales is related to the phenomenon of small-scale intermittency (that 7
IS, uneven distribution in space of the small scales). (Sreeinivasan, 1999)
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Planar cuts of the three-dimensional fields of energy dissipation in a box of homogeneous and
isotropic turbulence. The data are obtained by solving the Navier-Stokes equations on a
computer. Not uncommon are amplitudes much larger than the mean; these large events
become stronger with increasing Reynolds number.
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The scaling exponents for the velocity increments with the separation distance in the inertial
range. The unfilled squares are determined for shearless turbulence by the ESS method,
using [Au |’ as the reference structure function The crosses are for a boundary layer.

The full line is K 41. 9



Alternative approach: Fourier decomposittion (no Frisch anymore).

For a flow which is homogeneous in space (i.e. statistical properties are independent of
position), a spectral description is very appropriate, allowing us to examine properties
as a function of wavelength. The total kinetic energy, given by

can be written in terms of the spectrum ¢; ;(k)

(4.6)

where ¢; ;(k) is the Fourier transform of the velocity correlation tensor R, ;(r):

';i]?'-.j (k) - (2?11.)3

f cxp(—ik.r)Ry, (r)dr ; Ri(r) = f w(X)u(x 1) (4.7)

R, ;(r) tells us how velocities at points separated by a vector r are related. If we
know these two point velocity correlations, we can deduce E(k). Hence the energy
spectrum has the information content of the two-point correlation.

Notice that in 4.7 there are velocities in points x and x+r, which is similar to the 2nd order structure function. In 10
this equation, al well as in 4.5 there is velocity in second power!!!li.



F(k) contains directional information. More usually, we want to know the energy at
a particular scale & = v k. .k without any interest in separating 1t by direction. To
find E(k), we integrate over the spherical shell of radius & (in 3-dimensions):

E = fE(k)a’k . f;fE(k)dadk - fDmE(k)d.k (4.8)
Then
E(k) = j{E(k}dJ - %j{ﬁaflj(k)da (4.9)

Assuming 1sotropy:
B(k) = 2nk2¢,(k) (4.10)
where ¢, (k) = ¢;.(k) for all k such that vVkk = k.

11



Balance of energy in phase space.

We have an equation for the evolution of the total kinetic energy E. Equally inter-
esting is the evolution of E(k), the energy at a particular wavenumber k. This will
imclude terms which describe the transter of energy from one scale to another, via
nonlinear mteractions.

Energy Input of energy slope =-5/3
injection log(B(K))§  at largest scales in inertial range
r Energy cascade
T through inertial effects
ji . . Energy Viscous dissipation
Y X1 \ |
Atp0QLQa |
[~©00a8 gdepaplgPpd } Inertial Range =
\ log(k)
Fig. 2.1. A depiction of the observed energy cascade
Dissipation
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Kolmogorov's 1941 theory for the energy spectrum makes use of the result that e, the
energy 1njection rate, and dissipation rate also controls the flux of energy. Energy
flux 1s independent of wavenumber k&, and equal to € for & > k;. Kolmogorov’'s theory
assumes the imjection wavenumber 1s much less than the dissipation wavenumber
(k; << kg, or large Re). In the intermediate range of scales k; < k < kg neither the
forcing nor the viscosity are explicitly important, but instead the energy flux e and
the local wavenumber &k are the only controlling parameters. Then we can express
the energy density as

E(k) = fl(e k) (4.25)
Now using dimensional analysis:

Quantity Dimension
Wavenumber & 1/L
Energy per unit mass £ U2 ~ L? / T?  we find
Energy spectrum E(k) EL ~ L3/T*
Energy flux e E/T ~ L?/T3

E(k) = Cge** k=2 (4.26)

C're 18 a universal constant known as the Kolmogorov constant. The region of param-
eter space in k where the energy spectrum follows this £=°/2 form is known as the
Inertial range. In this range, energy cascades from the larger scales where 1t was
injected ultimately to the dissipation scale. The theory assumes that the spectra at
any particular £ depends only on spectrally local quantities - 1.e. has no dependence
on k; for example. Hence the possibility for long-range interactions 1s ignored.



We can also derive the Kolmogorov spectrum in the following manner (after Obukhov):
Define an eddy turnover time 7(k) at wavenumber k& as the time taken for a parcel
with energy E(k) to move a distance 1/k. If 7(k) depends only on E(k) and k then,

from dimensional analysis

1/2

(k) ~ [k.EE(ﬁ:)]_ (4.27)

The energy flux can be defined as the available energy divided by the characteristic
time 7. The available energy at a wavenumber k is of the order of KE(k). Then we
have

 kE(k)

ey~ FTERT (4.28)

€

and hence

E(k) ~ /3 =5/3 (4.29)

15



Scales and the Energy Spectrum

The largest length scales in a turbulent flow are set by the dimensions of the flow field or
the size of the body generating the flow disturbance. If the characteristic dimension and
velocity are L and U respectively, a mean flow advection time scale is L/U. The
characteristic time for viscous diffusion across a length L is L*/v and the ratio of these
times is the Reynolds number, Re = UL/v. The smallest scales, n and n*/v, are set by

the dissipation rate of turbulent energy.

Elk, 1)

E mnmmu -

Largest eddies ol éiuddlu % Universal equilibrium range
permanent
charci ==
{dependent on
: subrange
f
ormation) R A b |

16
Distribution of turbulent energy in wave number space.
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Fic. 5. Power spectral densities S{f) of the same data as presented in Figs. 3 and 4. All
spectra are in units of their variance per frequency: spectra of BBC data are divided by a factor
of 10 for better resolution. For the top panel the frequencies are converted into wavelength

assuming a constant horizontal wind speed of 8 m s™%
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FIG. 12. Left panel: Measured velocity versus flight time for F/PDI (top curve) and a sonic anemometer (bottom curve). The offset of approximately 1.5 m s~
is due to the location of F/PDI being closer to the stagnation point of the measurement platform than the sonic. Right panel: Power spectral density (PSD) versus
spatial frequency for low velocity measurements from F/PDI (solid) and the sonic (dashed); a line with slope —5/3 is included for reference (dotted).

Chuang et al., 2008
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Kolmogorov scale and other characteristic scales of turbulence

Above a certain wavenumber k;, viscosity will become important, and E(k) will
decay more rapidly than in the inertial range. The regime £ = k; 1s known as the
dissipation range. An estimate for k; can be made by assuming

E(}f-) = C’fffgfgk_wg ok < k< ky
Ek)=0: k> k (4.30)

and substituting in eqn 4.22, and integrating between k; and k;. Then we have

| /4

The inverse l; = 1/k4 is known as the Kolmogorov scale, the scale at which dissi-
pation becomes important.
314
lg ~ (F]-’l ) (4.32)

/

Komogorov scale is often denoted as n

21



At the other end of the spectrum, the important lengthscale 1s ;. the integral scale.
the scale of the energy-containing eddies. [; = 1/k;. We can also evaluate [; in terms
of e. We can write

W= U2 = f E(k)dk (4.33)
0

and substituting for E'(k) from eqn 4.26
(2 — f Cre 221753 (4.34)
0

Assume that 1/2 of the energy is contained at scales k > k;. Then

U2 = 6Cy e/ 3k (4.35)
and )
ki ~ 73 (4.36)
so that l; ~ U*® /é. Then the ratio of maximum and minimum dynamically active
scales 274
. : r3 T7.\ " ,
‘!d }L-_?_ 3/ d3/4 . i

where Hey, 1s the Integral Reynolds number. Hence the range of scales goes as
the Reynolds number to the power 3/4. This information is useful in estimating
numerical resolution necessary to simulate turbulence down to the Kolmogorov scale
at a chosen Reynolds number.



Taylor microscale.

A third length scale often used to characterise turbulence is the Taylor microscale:

(4.38)

The Taylor microscale 1s the characteristic spatial scale of the velocity gradients.
Using A, an alternative Reynolds number can be defined:

(4.39)

where Re, ~ Reglji ~ Ei/}..

Taylor microscale Reynolds number

23



Taylor microscale interpretation:

r
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Figure 12, Frequency spectra of a 60-s-long time series of vertical wind velocity, w, and temperature,
T'. respectively. measured on 8 November 1997 with HELIPOD in the altitude range between 1380 m
MSL and 1470 m MSL. well above the California Central Coast marine capping inversion. The noise
floors are at about 1 x 107" m? s™2 Hz~ ' and 3 x 107% K> Hz" !, respectively, which at a Nyquist

frequency of 50 Hz corresponds to uncorrelated noise standard deviations of 2.2 mms™

1

in w and

1.2mK in T, respectively. The outliers at 30 Hz are due to sound waves from the helicopter rotor.

Muschinski et al., 2001



4.3 Passive tracer spectra

For a passive scalar which obeys an equation of the form

6 .
— =KV 4.47
5 =V (4.47)

we can write an equation for the variance 82

i

Gy = —KVELVE (4.48)

and an equation for the spectrum P(k£) of this variance analogous to eqn 4.20:
dk*P(k) =T(k) + F(k) (4.49)

where now T'(k) is the transfer of variance, and F(£) is the forcing of variance. We
can show that all the same properties apply as for the kinetic energy spectrum: the
dissipation of variance x must equal the total injection of variance [° F(k)dk. At
wavenumbers far from the injection scale and dissipation scale, variance 1s fluxed at a
constant rate x (set by the injection rate). Using this information we can obtain the
form of the spectrum P(k). However, y and F are not the only relevant parameters,
since the tracer field is subject to the flow. The flow parameters (e.g. € ) also influence
the tracer field.
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PSD of temperature fluctuations, intensive mixing in cloud top region

PSD’s IDf t:en'llp?réltlllrle ﬂuctlfaticfnsl in various layers " UFT-M1 (black) and UFT-M2 (red)
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Fig. 11. Example PSDs of temperature fluctuations of a 1 kS o1 Fig. 9. Power spectra of the error corrected, unfiltered signals from

) L two nearby sensing wires, UFT-MI1 and UFT-M2, recorded in the
signal collected at various levels of a turbulent stratocumulus topped ) i ; o

region of intensive turbulent mixing.
boundary layer.

Kumala et al., 2013 27



