Modelling the diurnal cycle of the Aerosol-filled PBL

with the Eddy Diffusivity/Mass Flux model coupled with the Radiative Transfer model

Florczyk, G. M.¹, Markowicz, K.¹ and Witek, M. L.²

¹Institute Of Geophysics, University Of Warsaw, Warsaw, Poland ²Jet Propulsion Laboratory, California Institute Of Technology, Pasadena, California

1

The presentation plan

- 1. What is the Eddy Diffusivity/Mass Flux model?
- 2. How was the radiation transfer model parameterized?
- 3. How were these two models joined together?
- 4. A quick look at the results
- 5. Summary

Motivation

- Cities of Poland often experience a carbon-based pollution, concentrated mainly in the PBL
- The PBL diurnal cycles and its evolution affects the aerosol spatial distribution and therefore influences the radiation transfer
- Our group collected a lot of data concerning the radiation fluxes and aerosol concentration in the PBL

Idea: Let's try to join a model describing the PBL evolution and the radiative transfer model

fig. 9 - The panorama of Krakow, Poland on 29th Nov 2019. Taken from the deck of an observation balloon located near the Wawel Castle

1. Eddy Diffusivity/Mass Flux model

What is the EDMF model?

- Eddy Diffusivity: addressing downward fluxes
- Mass Flux: addressing the limitations of the ED. Introducing a strong thermal updraft motion

fig. 1 - The simplistic drawing depicting the EDMF framework $^{\left[1\right] }$

Equations in the EDMF Model

The prognostic equation for a scalar field $\phi^{[2]}$:

$$\frac{\partial \bar{\phi}}{\partial t} = \frac{\partial}{\partial z} \left[-K_{\phi} \frac{\partial \bar{\phi}}{\partial z} + M(\phi_u - \bar{\phi}) \right] + F$$

The additional prognostic equation for TKE closure^[2]:

$$\frac{\partial e}{\partial t} = -\frac{\partial}{\partial z} \left(-K_e \frac{\partial e}{\partial z} \right) + \frac{g}{\bar{\theta_v}} \overline{w' \theta'_v} - D$$

+ additional equations for K, M, D, F, ϕ_u etc.

Short description of the implementation

- Written fully in MATLAB
- The model operates in one dimension
- The spatial range: [0; 4] km, the spatial resolution: 20m
- The temporal resolution: 1 min
- Modelling the dry conditions

and other, less relevant settings...

2. Fu-Liou Model

δ -four-stream model with Fu-Liou parametrization

- The δ -four-stream approach is a **natural extension** of the popular two-stream radiative transfer model commonly used in atmospheric sciences
- The parameterization proposed by Fu, Liou and Ackermann^[3] proves to be **relatively** accurate and not much more complex
- The legacy code in fortran works **relatively fast**
- The fortran solver was embedded in the MATLAB shell to make it more user friendly

What parameters were used?

- Spectral resolution: 6 short wave and 12 long wave bands
- Spatial resolution: 78 levels from 0 to 100 km above the ground
- Near the ground (>600 hPa) the grid is denser. In the range [0; 4] km the spatial resolution is 80m
- The clear-sky case (with the aerosol present)
- The sun position was calculated for a user defined DOY and location

and other, less relevant settings...

3. EMDF/RT Coupling

How were these two models combined?

TIME LOOP

fig. 2 - The block diagram showing how two models were joined together in one time loop and how they exchange data

Initial profiles: Potential temperature and Heating rate

fig. 3a - The evolution of the PBL temperature with time

fig. 3b - The evolution of the PBL Heating rate with time

Additional remark: The extinction suppression

fig. 4 - Examples of extinction profiles. Dashed lines denote profiles at the end of the simulation. 'x' denotes the PBL top

The extinction profile was calculated as follows:

$$\mu_e(z) = \begin{cases} \mu_{e,0} & \text{, if } z \le z^* \\ \mu_{e,0} \int_{z^*}^{\infty} e^{-\frac{z-z^*}{H}} & \text{, if } z > z^*. \end{cases}$$

with the normalization condition:

$$\tau_a = \int_0^\infty \mu_e(z) dz$$

or after the integration:

$$\tau_a = \mu_{e,0}(z^* + H)$$

The PBL Height vs Aerosol optical depth

The PBL mean temperature difference vs Aerosol optical depth

The PBL Height vs Aerosol single scattering albedo

18

The PBL mean temperature difference vs Aerosol single scattering albedo

Summary

- The coupled model is relatively fast: 6 h of simulation with 1 min time step took about 2 min to run on a standard personal PC
- Output suggests:
 - Non-absorbing aerosol and low amounts of aerosol have a small impact on the PBLH and the 0 temperature difference
 - The more absorbing the aerosol, the higher the temperature of the PBL 0
 - The more polluted the PBL the higher its temperature 0
- The extinction profile suppression effect:
 - Low suppression \rightarrow Aerosol above the PBL 0
 - High suppression \rightarrow Aerosol only in PBL 0
- \rightarrow Smaller PBLH, Lower Temperature
- \rightarrow Higher PBLH, Higher Temperature

References

[1] Siebesma, A. P., Soares, P. M. M., Teixeira, João (2007) A Combined Eddy-Diffusivity Mass-Flux Approach for the Convective Boundary Layer. *Journal of The Atmospheric Sciences*, 64, 1230–1248, doi: 10.1175/JAS3888.1

[2] Witek, M., L., J. Teixeira, G. Matheou (2010), An Integrated TKE-Based Eddy Diffusivity/Mass Flux Boundary Layer Closure for the Dry Convective Boundary Layer, *Journal of the Atmospheric Sciences*, 68, 1526, doi: 10.1175/2011JAS3548.1

[3] Liou, K. & Fu, Q. & Ackerman, T. (1988). A Simple Formulation of the Delta-Four-Stream Approximation for Radiative Transfer Parameterizations. Journal of the Atmospheric Sciences. 45. doi: 10.1175/1520-0469(1988)045<1940:ASFOTD>2.0.CO;2.

Thank you for your attention!

G. M. Florczyk: gflorczyk@fuw.edu.pl K. Markowicz: Krzysztof.Markowicz@fuw.edu.pl M. L. Witek: marcin.l.witek@jpl.nasa.gov

Acknowledgements:

Research conducted within the project: Aerosol impact on microphysical, optical and radiation properties of fog (UMO-2017/27/B/ST10/00549) of National Science Centre.

fig. 9 - The panorama of Krakow, Poland on 29th Nov 2019. Taken from the deck of an observation balloon located near the Wawel Castle