Turbulence properties in stratocumulus and cumulus clouds

Jakub L. Nowak

UNIVERSITY | INSTITUTE of Warsaw | of Geophysics

Lille Turbulence Programme 6.07.2023

Nowak et al. 2021

Nowak et al. 2021

Epsilon fit $D_w(r) = B_T(\epsilon_w r)^{\frac{2}{3}}$

Nowak et al. 2021

Epsilon fit $D_w(r) = B_T(\epsilon_w r)^{\frac{2}{3}}$ Scaling fit $D_w(r) = \text{const } r^{s_w}$

Nowak et al. 2021

Epsilon fit $D_w(r) = B_T(\epsilon_w r)^{\frac{2}{3}}$ Scaling fit $D_w(r) = \text{const } r^{s_w}$ Correlation $R_w(\log r, \log D_w)$

Nowak et al. 2021

Epsilon fit $D_w(r) = B_T(\epsilon_w r)^{\frac{2}{3}}$ Scaling fit $D_w(r) = \text{const } r^{s_w}$ Correlation $R_w(\log r, \log D_w)$

Isotropy $\langle u'^2 \rangle = \langle v'^2 \rangle = \langle w'^2 \rangle \quad \epsilon_u = \epsilon_v = \epsilon_w$

$$A_{var} = \frac{2\langle w'^2 \rangle}{\langle u'^2 \rangle + \langle v'^2 \rangle} \neq 1$$

$$A_{\epsilon} = \sqrt{\frac{2\epsilon_w^2}{\epsilon_u^2 + \epsilon_v^2}} \neq 1$$

Nowak et al. 2021

PART I: Stratocumulus-topped boundary layer

Coupled boundary layer

Coupled boundary layer

Malinowski et al. 2013: northeastern Pacific

Malinowski et al. 2013: northeastern Pacific

Free Tropospheric Layer (FTL)

Entrainment Interface Layer (EIL)

Stratocumulus Layer (SCL)

Subcloud Layer (SBL)

Nicholls and Leighton 1986: North Sea

Nicholls and Leighton 1986: North Sea

Malinowski et al. 2013: northeastern Pacific

Nicholls and Leighton 1986: North Sea

Field campaign ACORES 2017

Azores stratoCumulus measurements Of Radiation, turbulEnce and aeroSols

2-22 July 2017

Helicopter sampling: 17 flights x 2 hours

Siebert et al. 2021

See also: Siebert et al. 2006

See also: Siebert et al. 2006

ACORES: Instrumentation

ACORES: Selected instruments

Variable		Instrument	Samp.	Resolution	References	
U,dd	horizontal wind speed and direction	ultrasonic anemometer-	100 Hz		Siebert and Teichmann 2000	
u,w	longitudinal and vertical wind components	thermometer Solent HS, Gill Instruments + inertial navigation		~ 20 cm	Nowak et al. 2021	
T_v	virtual temperature	+ GPS			Siebert and Muschinski 2001	
Т	temperature	UltraFast Thermometer, University of Warsaw	4 kHz	~ 0.5 cm	Haman et al. 1997 Nowak et al. 2018	
q_v	specific humidity	open-path LI-7500, LI-COR Environmental	20 Hz	~ 1 m	Lampert et al. 2018	
q_l	liquid water mass fraction	Particle Volume Meter, Gerber Scientific	1 kHz	~ 2 cm	Gerber et al. 1994 Wendisch et al. 2002	

See also: Siebert et al. 2006, Siebert et al. 2021

ACORES: Flight patterns

Flight #5, 8 July 2017 Coupled boundary layer

Flight #14, 18 July 2017 Decoupled boundary layer

Stratocumulus-topped BL: Stratification

Coupled boundary layer

Decoupled boundary layer 13

Stratocumulus-topped BL: Epsilon and structure function scaling (1)

Coupled boundary layer

Decoupled boundary layer

Stratocumulus-topped BL: Epsilon and structure function scaling (2)

Coupled boundary layer

Decoupled boundary layer

Stratocumulus-topped BL: Anisotropy

Coupled boundary layer

Decoupled boundary layer

Stratocumulus-topped BL: Summary

PART II: Shallow-cumulus boundary layer

Field campaign EUREC4A 2020

Elucidating the role of clouds-circulation coupling in climate

Jan-Feb 2020 in western Atlantic

4 manned aircrafts + 3 autonomous vehicles 4 research vessels + many drifters/buoys 1 ground-based station BCO

including French SAFIRE ATR-42 (19 flights x 4 h)

Stevens et al. 2021, Bony et al. 2022

EUREC4A: ATR-42 sampling strategy

EUREC4A: ATR-42 flight patterns

Rectangles 120x20 km perpendicular to the mean easterly wind at **cloud base** (targeted level of max cloud fraction) L-shape legs 60+60 km, along/across wind, near the **top of the sub-cloud layer**, 150-200 m below cloud base L-shape legs 60+60 km, along/cross wind, near the **middle of the sub-cloud layer**

Near-surface leg about 40 km at 60 m

RF12 2020-02-05

Bony et al. 2022

EUREC4A: ATR-42 selected instruments

25 Hz

~4 m

Instrument	Brief description	Position on ATR	
5-hole radome	For measuring the differential pressure around the nose of the aircraft	radome	
Pitot probes	Rosemount and Thales transducers connected to Pitot probes measuring static and dynamic pressure	fuselage	
Rosemount 1	E102AL non-deiced temperature sensor	nose (right-hand side); [N1- 4, FR2-3]	- Contraction
Rosemount 2	E102AL deiced temperature sensor	fuselage (right-hand side); [N1-8, FR15-16]	E
Fine wire	fine wire resistance for measuring fast temperature fluctuations	nose (left-hand side); [N1- 1, FR2-3]	S.

Measurements in cumuli: Cloud detection

Measurements in cumuli: Cloud detection

PMA cloud mask

- CDP-2 + 2D-S composite in dataset Coutris (2021)
- $LWC|_{2 \ \mu m < D < 90 \ \mu m} > 0.01 \frac{g}{m^3}$
- available at 1 Hz, i.e. ~100 m resolution

RH cloud mask

- RH calculated following Bony et al. 2022
- *RH* > 98 %
- available at 25 Hz, i.e. ~4 m resolution

Measurements in cumuli: Cloud detection

Define averaging windows of 200 m overlapping by 1/2 length.

Define averaging windows of 200 m overlapping by ½ length.

Estimate turbulence parameters inside those windows.

Define averaging windows of 200 m overlapping by ½ length.

Estimate turbulence parameters inside those windows.

Estimate cloud fraction in each window using RH or PMA cloud mask.

Define averaging windows of 200 m overlapping by $\ensuremath{\%}$ length.

Estimate turbulence parameters inside those windows.

Estimate cloud fraction in each window using RH or PMA cloud mask.

Consider windows with CF>2/3 as cloudy whereas CF=0 as clear-air.

Shallow cumulus BL: Example timeseries at cloud-base

Shallow cumulus BL: Example timeseries at cloud-base (zoom)

Shallow cumulus BL: Example timeseries in the subcloud-layer

Shallow cumulus BL: Thermodynamics

	CB clear	PMA cloud	RH cloud
<i>w'</i> [m/s]	-0.013 ± 0.280	0.25 ± 0.62	0.28 ± 0.51
<i>T'</i> [°C]	0.009 ± 0.155	-0.18 ± 0.18	-0.21 ± 0.16
$r_{v}^{\prime} [{ m g/kg}]$	-0.033 ± 0.533	0.69 ± 0.66	0.95 ± 0.56

mean ± standard deviation

Shallow cumulus BL: Epsilon

$[cm^2s^{-3}]$	surface	mid SBL	top SBL	CB clear	PMA cloud	RH cloud
ϵ_w	3.25 ± 3.85	1.12 ± 1.72	0.43 ± 0.85	0.11 ± 0.24	3.35 ± 4.27	2.17 ± 2.99
ϵ_u	4.27 ± 5.04	1.33 ± 1.88	0.62 ± 1.09	0.17 ± 0.35	3.27 ± 3.68	2.33 ± 3.40
ϵ_{v}	4.11 ± 5.58	1.25 ± 1.87	0.56 ± 1.03	0.15 ± 0.32	2.95 ± 3.76	2.25 ± 3.01

mean ± standard deviation

Shallow cumulus BL: structure function scaling

	surface	mid SBL	top SBL	CB clear	PMA cloud	RH cloud
S _W	0.62 ± 0.28	0.71 ± 0.31	0.66 ± 0.31	0.67 ± 0.34	0.77 ± 0.31	0.73 ± 0.31
S _u	0.62 ± 0.29	0.64 ± 0.28	0.64 ± 0.29	0.64 ± 0.31	0.67 ± 0.30	0.64 ± 0.30
Sv	0.64 ± 0.29	0.67 ± 0.29	0.66 ± 0.30	0.67 ± 0.32	0.67 ± 0.31	0.67 ± 0.30

mean ± standard deviation

— surface — mid SBL — top SBL

- CB clear

Shallow cumulus BL: Anisotropy

	surface	mid SBL	top SBL	CB clear	PMA cloud	RH cloud
A_{ϵ}	0.86 ± 0.67	1.02 ± 0.90	0.86 ± 0.82	0.82 ± 0.94	1.31 ± 1.17	1.15 ± 1.08

mean ± standard deviation

Shallow cumulus BL: Summary

