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Atmospheric research @Institute of Geophysics, UW

● Atmospheric aerosol
– Measurements (mostly)

● Cloud dynamics and atmospheric turbulence
– Observations, theory and small-scale numerical models

● Microphysics of clouds
– Fully developed numerical model of clouds
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– Clouds are important for weather and climate
– Cloud observations are challenging
– Laboratory experiments do not cover all length scales
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Numerical cloud modeling
● Why?

– Clouds are important for weather and climate
– Cloud observations are challenging
– Laboratory experiments do not cover all length scales

● How?
– Modeling air flow (CFD) and cloud droplets (microphysics)

● Challenges
– Broad range of important spatial and temporal scales



    

Cloud length and time scales

~ 10 km

~100 / cc

~1 mm eddies

● Cloud droplet activation: 
~0.01 s

● Cloud system lifetime: hours 
to days

● Climate prediction: ~50 y
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Cloud modeling across scales

adapted from Morrison et al. JAMES (2020)
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LES use cases
● Basic research in cloud physics.
● Improvement of parameterizations used in weather and 

climate models.
● Predictive models are starting to use resolutions close to 

LES (e.g. project NextGEMS). Methods developed for LES 
will be used directly in global models.
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University of Warsaw Lagrangian Cloud Model (UWLCM)

● Tool for large eddy simulations (LES) of clouds
● Sophisticated cloud microphysics model – super-droplet 

method (SDM)
● Developed for 10+ years
● Written in C++
● Open-source
● Runs on accelerated computing clusters
● github.com/igfuw/UWLCM



UWLCM basics
● Modeling air flow (2d or 3d):

– Large eddy simulations: small-scale turbulence 
is parameterized
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Eulerian variables
● Governed by anelastic 

equations



Eulerian variables
● Governed by anelastic 

equations
● Staggered rectangular grid 

with stretching
● Solved with MPDATA



UWLCM basics
● Modeling air flow (2d or 3d):

– Large eddy simulations: small-scale turbulence 
is parameterized

● Modeling temperature and humidity
● Modeling liquid water

– Bulk microphysics
– Super-droplet method

Eulerian

Lagrangian



Super-droplets (SD)
● Computational particle-like 

objects called super-droplets 
represent:
– Humidified aerosols
– Cloud droplets
– Rain drops



SD: Droplet size distribution

adapted from Morrison et al. JAMES (2020)

● Each SD represent multiple real hydrometeors (multiplicity) with same 
properties (e.g. radius)

● Evolution of the DSD is resolved, like in bin microphysics



Collision-coalescence in SDM

adapted from Unterstrasser et al. GMD (2016)

Collision of a pair of SDs (stochastic):

before
after

⟨coll ⟩(SD)=⟨coll ⟩

● Correct mean number of collisions:

σ(coll)(SD)≈√ N
NSD

σ(coll)

● Too high standard deviation:

    – number of droplets
    – number of super-droplets
N
NSD



Subgrid scale turbulence in UWLCM
          Diffusion

● Smagorinsky
● Implicit LES
● Random component of 

SD velocity 
(Grabowski&Abade 2017)

      Microphysics
● Turbulent enhancement 

of collision-coalescence 
● Random component of SD 

supersaturation 
(Grabowski&Abade 2017)



Use of heterogeneous (CPU+GPU) clusters

● Eulerian component: resides in RAM, computed by CPUs
● Lagrangian component: resides in GPU RAM, computed by GPUs



    

Domain decomposition

Top-down view of modeled domain; squares are Eulerian grid cells; coloring shows MPI, thread and GPU ranks.



Weak scaling test

Wall time per time step vs number of nodes. Timings of simultaneous CPU 
and GPU computations (blue), CPU-only computations (orange) and 
GPU-only computations (green) are stacked.

● GPU time scales better than 
CPU time

● Simultaneous CPU and GPU 
usage should be maximized for 
an optimal number of nodes 
(larger than shown)

● Up to the optimal number of 
nodes, scaling efficiency of the 
total wall time is ca. 100%



Strong scaling on CPU, weak on GPU

Wall time per time step vs number of nodes. Timings of simultaneous 
CPU and GPU computations (blue), CPU-only computations (orange) and
GPU-only computations (green) are stacked.

● Good balance of CPU and GPU 
computations (ca. 80%) for an 
optimal number of nodes (5-10 
in this case)



Projects and Collaborations
● Large European projects we are currently involved in:

– Next Generation Earth Modeling Systems, EU Horizon 2020
– HANAMI, EU-Japan HPC collaboration, EuroHPC

● Long-standing collaboration with scientists from:
– National Center for Atmospheric Research, Boulder, Co, USA
– University of Hyogo/RIKEN, Kobe, Japan



Plans for UWLCM
● Ice microphysics

Gupta et al. CEE 2023
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Stratocumulus clouds in storm-resolving models (SRMs)
● Climate models are evolving towards storm-

resolving resolutions of the order of 1km 
(NextGEMS project).

● It is a “grey-zone” resolution, where neither 
parameterisations from LES nor from global 
models work properly.

● Stratocumuli (Sc) are hard to model, but 
important for global albedo.

● In SRMs, Sc: 
– have wrong morphology (Fons et al. 2024),
– drizzle too much (Fons et al. 2024),
– are susceptible to turbulence parameterisations 

(Nowak et al. 2024).



Sc morphology – models vs satellites

Fons et al. (2024)

● Real Sc are aggregated 
in closely connected cells

● Clouds in Sc regions in 
ICON are made of less 
connected cells (sparse, 
larger variability in cloud 
depth)



Sc morphology vs resolution: 
Δx=5km Δz=50m
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Sc morphology vs resolution: 
Δx=1km Δz=20m



Sc morphology vs resolution: 
Δx=100m Δz=10m



Sc morphology vs resolution: 
Δx=50m Δz=5m



Smagorinsky SGS turbulence model

D t v⃗=...+∇⋅(K E)

isotropic

K – eddy viscosity
E – deformation tensor
l – length scale, e.g.:

anisotropic

K∝ l|E|

l=C (Δ xΔ y Δ z)(1/3)

● Typically Δz < Δx = Δy
●                                   ?
●                                   ?
● Which K for which component of E?
● Eh, Ev ?

K h∝lh|E| K v∝lv|E|

K h∝lv|E| K v∝lh|E|



Sc morphology vs turbulence model: 
Δx=5km Δz=50m

isotropic anisotropic
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Sc morphology vs turbulence model: 
Δx=100m Δz=10m

isotropic anisotropic



Sc morphology vs turbulence model: 
Δx=50m Δz=5m

isotropic anisotropic



Conclusions / Opportunities
● Next generation climate models need new (simple) 

methods that would account for the effects of km-scale 
turbulence.

● Role of O(10m) turbulence in rain formation is an active 
area of research.
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