Cloud modeling software developed at the University of Warsaw

P. Dziekan, A. Makulska, P. Zmijewski, H. Pawlowska Institute of Geophysics, Faculty of Physics, University of Warsaw

Fluids ZA Seminar, MEL, PW, 17.01.25

Atmospheric research @Institute of Geophysics, UW

- Atmospheric aerosol
	- Measurements (mostly)

- Cloud dynamics and atmospheric turbulence
	- Observations, theory and small-scale numerical models

- **Microphysics of clouds**
	- **Fully developed numerical model of clouds**

- 1) Cloud modeling basics
- 2) Overview of the University of Warsaw Lagrangian Cloud Model (UWLCM)
- 3) Why subgrid-scale turbulence matters: a case study

1) Cloud modeling basics

Numerical cloud modeling

- Why?
	- Clouds are important for weather and climate
	- Cloud observations are challenging
	- Laboratory experiments do not cover all length scales

Numerical cloud modeling

- Why?
	- Clouds are important for weather and climate
	- Cloud observations are challenging
	- Laboratory experiments do not cover all length scales
- How?
	- Modeling air flow (CFD) and cloud droplets (microphysics)

Numerical cloud modeling

- Why?
	- Clouds are important for weather and climate
	- Cloud observations are challenging
	- Laboratory experiments do not cover all length scales
- How?
	- Modeling air flow (CFD) and cloud droplets (microphysics)
- **Challenges**
	- Broad range of important spatial and temporal scales

Cloud length and time scales

 \sim 10 km

- Cloud droplet activation: -0.01 s
- Cloud system lifetime: hours to days
- Climate prediction: ~50 y

Cloud modeling across scales

Cloud modeling across scales

Scales of Atmospheric Motion

adapted from Morrison et al. *JAMES* (2020)

Cloud modeling across scales

LES use cases

- Basic research in cloud physics.
- \bullet Improvement of parameterizations used in weather and climate models.
- Predictive models are starting to use resolutions close to LES (e.g. project NextGEMS). Methods developed for LES will be used directly in global models.

1) Cloud modeling basics

2) Overview of the University of Warsaw Lagrangian Cloud Model (UWLCM)

University of Warsaw Lagrangian Cloud Model (UWLCM)

- Tool for large eddy simulations (LES) of clouds
- Sophisticated cloud microphysics model super-droplet method (SDM)
- Developed for 10+ years
- Written in $C++$
- Open-source
- Runs on accelerated computing clusters
- qithub.com/igfuw/UWLCM

- Modeling air flow (2d or 3d):
	- Large eddy simulations: small-scale turbulence is parameterized

- Modeling air flow (2d or 3d):
	- Large eddy simulations: small-scale turbulence is parameterized
- Modeling temperature and humidity

- Modeling air flow (2d or 3d):
	- Large eddy simulations: small-scale turbulence is parameterized
- Modeling temperature and humidity
- Modeling liquid water
	- Bulk microphysics

- Modeling air flow (2d or 3d):
	- Large eddy simulations: small-scale turbulence is parameterized

Eulerian

- Modeling temperature and humidity
- Modeling liquid water
	- Bulk microphysics

Eulerian variables

Governed by anelastic equations

 $D_t \mathbf{u} = -\nabla \pi + kB + \mathbf{F}_u.$ $D_t \theta = \frac{\theta^e}{T^e} \left(\frac{l_v}{c_{vd}} C \right) + F_{\theta},$ $D_t q_v = -C + F_{q_v},$ $\nabla \cdot (\rho_d^r \mathbf{u}) = 0.$ $B = g \left[\frac{\theta - \theta^e}{\theta^r} + \epsilon (q_v - q_v^e) - (q_l - q_l^e) \right]$

Eulerian variables

- Governed by anelastic equations
- Staggered rectangular grid with stretching
- Solved with MPDATA

- Modeling air flow (2d or 3d):
	- Large eddy simulations: small-scale turbulence is parameterized
- Modeling temperature and humidity
- **Modeling liquid water**
	- Bulk microphysics
	- Super-droplet method

Super-droplets (SD)

- Computational particle-like objects called super-droplets represent:
	- Humidified aerosols
	- Cloud droplets
	- Rain drops

SD: Droplet size distribution

- Each SD represent multiple real hydrometeors (multiplicity) with same properties (e.g. radius)
- Evolution of the DSD is resolved, like in bin microphysics

adapted from Morrison et al. *JAMES* (2020)

Collision-coalescence in SDM

Collision of a pair of SDs (stochastic):

adapted from Unterstrasser et al. *GMD* (2016)

- $\langle\,coll\,\rangle^{\rm (SD)}{=}\langle\,coll\,\rangle$ • Correct mean number of collisions:
- Too high standard deviation:

 σ (*coll*)^(SD) $\approx \sqrt{\frac{N}{N_s}}$ N_{SD} σ (*coll*)

 – number of droplets *N* $N\rm_{\rm SD}$ – number of super-droplets

Subgrid scale turbulence in UWLCM

Diffusion

- Smagorinsky
- Implicit LES
- Random component of SD velocity (Grabowski&Abade 2017)

Microphysics

- Turbulent enhancement of collision-coalescence
- Random component of SD supersaturation (Grabowski&Abade 2017)

Use of heterogeneous (CPU+GPU) clusters

- Eulerian component: resides in RAM, computed by CPUs
- Lagrangian component: resides in GPU RAM, computed by GPUs

Domain decomposition

Top-down view of modeled domain; squares are Eulerian grid cells; coloring shows MPI, thread and GPU ranks.

Weak scaling test

- GPU time scales better than CPU time
- Simultaneous CPU and GPU usage should be maximized for an optimal number of nodes (larger than shown)
- Up to the optimal number of nodes, scaling efficiency of the total wall time is ca. 100%

Wall time per time step vs number of nodes. Timings of simultaneous CPU and GPU computations (blue), CPU-only computations (orange) and GPU-only computations (green) are stacked.

Strong scaling on CPU, weak on GPU

● Good balance of CPU and GPU computations (ca. 80%) for an optimal number of nodes (5-10 in this case)

Wall time per time step vs number of nodes. Timings of simultaneous CPU and GPU computations (blue), CPU-only computations (orange) and GPU-only computations (green) are stacked.

Projects and Collaborations

- Large European projects we are currently involved in:
	- Next Generation Earth Modeling Systems, EU Horizon 2020
	- HANAMI, EU-Japan HPC collaboration, EuroHPC
- Long-standing collaboration with scientists from:
	- National Center for Atmospheric Research, Boulder, Co, USA
	- University of Hyogo/RIKEN, Kobe, Japan

Warm-rain and Ice crystal Processes

Plans for UWLCM

 $\textcolor{red}{\bullet}$ Ice microphysics

1) Cloud modeling basics

2) Overview of the University of Warsaw Lagrangian Cloud Model (UWLCM)

3) Why subgrid-scale turbulence matters: a case study

Stratocumulus clouds in storm-resolving models (SRMs)

- Climate models are evolving towards stormresolving resolutions of the order of 1km (NextGEMS project).
- It is a "grey-zone" resolution, where neither parameterisations from LES nor from global models work properly.
- Stratocumuli (Sc) are hard to model, but important for global albedo.
- In SRMs, Sc:
	- have wrong morphology (Fons et al. 2024),
	- drizzle too much (Fons et al. 2024),
	- are susceptible to turbulence parameterisations (Nowak et al. 2024).

Sc morphology – models vs satellites

- Real Sc are aggregated in closely connected cells
- Clouds in Sc regions in ICON are made of less connected cells (sparse, larger variability in cloud depth)

Sc morphology vs resolution: $\Delta x = 5km \Delta z = 50m$

Sc morphology vs resolution: $\Delta x = 2km \Delta z = 20m$

Sc morphology vs resolution: $\Delta x = 1$ km $\Delta z = 20$ m

 $t = 8.64e + 04$

Sc morphology vs resolution: $\Delta x = 100$ m $\Delta z = 10$ m

Sc morphology vs resolution: $\Delta x = 50$ m $\Delta z = 5$ m

Smagorinsky SGS turbulence model

$D_t \vec{v} = ... + \nabla \cdot (K \, \bm{E})$ isotropic $K \propto l |E|$

- K eddy viscosity
- **E** deformation tensor
- l length scale, e.g.: *l* = *C*(Δ *x* Δ *y* Δ *z*)^(1/3)

anisotropic

- Typically $\Delta z < \Delta x = \Delta y$
- $K_h \propto l_h |E|$ $K_v \propto l_v |E|$?
- $K_h \propto l_v |E|$ $K_v \propto l_h |E|$?
- Which K for which component of **E**?
- \cdot **E**_h, **E**_v?

Sc morphology vs turbulence model: Δx=5km Δz=50m

isotropic anisotropic

Sc morphology vs turbulence model: Δx=2km Δz=20m

Sc morphology vs turbulence model: Δx=1km Δz=20m

Sc morphology vs turbulence model: $Δx=100m Δz=10m$

isotropic anisotropic

Sc morphology vs turbulence model: Δx=50m Δz=5m

 $\overline{\mathbf{v}}$

 $t = 2.43e + 04$ 25000 100 20000 80 15000 60 \rightarrow 10000 -40 5000 20 $\mathbf 0$ 5000 10000 15000 20000 25000 $\mathbf 0$ $\pmb{\times}$

isotropic anisotropic

Conclusions / Opportunities

- Next generation climate models need new (simple) methods that would account for the effects of km-scale turbulence.
- Role of O(10m) turbulence in rain formation is an active area of research.