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LECTURE OUTLINE

1. Ways of reaching saturation
• vertical motion
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THERMODYNAMICS IN 
VERTICAL MOTION

1. Lifting condensation level (LCL)
2. Dew-point temperature variation in vertical motion
3. Pseudo-adiabatic process

§ saturated adiabatic lapse rate
§ water condensed in pesudo-adiabatic process
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A parcel that moves vertically expands or contracts to preserve its mechanical equilibrium
(adjusts its pressure to the environmental pressure).

It results in work being performed. Compensating this work is a change of internal energy, 
which alters the temperature and hence the saturation vapor pressure. 

Saturation vapor pressure depends on temperature (assuming Llv=const):

The saturation specific humidity varies with pressure and temperature:
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The saturation specific humidity in a parcel:
• increases with decreasing pressure (increase of altitude)
• decreases sharply with decreasing temperature, which likewise accompanies upward

motion.

Even though an ascending parcel’s pressure decreases exponentially with altitude, the 
temperature dependence prevails, so its saturation specific humidity decreases
monotonically with altitude. 
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Lifting condensation
level
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As it rises, the parcel performs work at the expense
of its internal energy.

The parcel’s temperature decreases at the dry
adiabatic lapse rate Gd.

The decrease of temperature is attended by a 
reduction of saturation specific humidity 𝑞!.

The parcel’s actual specific humidity 𝑞$ and 
potential temperature 𝜃 remain constant. 

Sufficient upward displacement will reduce the 
saturation specific humidity, 𝑞!, to the actual
specific humidity, 𝑞$ .

The elevation where 𝑞$ = 𝑞! for the first time is
referred to as the lifting condensation level (LCL). 
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Consider a moist (unsaturated) air parcel ascending in thermal convection. 

Under unsaturated conditions, the parcel’s specific humidity and saturation specific
humidity satisfy 𝑞$ < 𝑞! .
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The lifting condensation level defines the base of cumulus clouds that are fueled by air
originating at the surface. 

Below the LCL, the parcel’s thermodynamic behavior can be regarded as adiabatic because
the timescale for vertical motion (from minutes in cumulus convection to 1 day in sloping
convection) is small compared to the characteristic timescale for heat transfer.
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Position of the LCL

/3510

As air expands adiabatically and cools, the relative humidity (f) increases as the 
temperature and saturation mixing ratio decrease. 

We will find coordinates of the LCL  𝑇%&% , 𝑝%&% – the point where the air becomes
saturated. 

We will find how 𝑒 and 𝑒! depend on temperature in adiabatic ascent.

Using Dalton’s law of partial pressure, that states that the total pressure exerted by a 
mixture of gases is equal to the sum of the partial pressures that would be exerted by each
constituents alone if it filled the entire volume at the temperature of the mixture. 

Therefore:  𝑑 ln 𝑝 = 𝑑 ln 𝑒 .
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𝑒
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The change of relative humidity fulfils the following equation:
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The First Law of thermodynamics for an adiabatic 
process in enthalpy form:

Using the Clausius-Clapeyron equation:

Because 𝑑 ln 𝑝 = 𝑑 ln 𝑒 :

The change of relative humidity fulfils the following equation:
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We will integrate the equation from initial conditions to conditions where saturation is
attained, indicated by f=1 and 𝑇 = 𝑇%&%, where 𝑇%&% . We will assume that Llv=const.

Equation can be solved numerically to obtain 𝑇%&%.

The saturation pressure can be obtained from the dry adiabat equation:
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An approximate equation for 𝑇%&% given initial values of T and f, is given by Bolton (1980). 

f T (oC) TLCL(oC) pLCL(hPa)
0,1 0 -16 815
0,1 10 -7 806
0,1 20 2 797
0,1 30 10 788

0,3 0 -8 896
0,3 10 1 891
0,3 20 10 886
0,3 30 19 880

0,5 0 -5 938
0,5 10 5 935
0,5 20 14 932
0,5 30 24 929

0,7 0 -3 968
0,7 10 7 966
0,7 20 17 964
0,7 30 27 962

𝑇%&% =
1

1
𝑇 − 55 −

ln 𝑓
2840

+ 55, 𝑇 = 𝐾
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Variation of dew-point 
temperature with altitude
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During adiabatic ascent, the water vapor specific humidity, 𝑞$, remains constant until
saturation occurs. 

The dew-point temperature decreases slightly during the ascent as pressure decreases. 

We will calculate how the dew-point temperature changes during ascent of non-saturated
adiabatic parcel. 

The dew-point temperature fullfils the equation:

The hydrostatic equation:

From the Dalton’s law:  𝑑 ln 𝑝 = 𝑑 ln 𝑒

For typical atmospheric values dTd/dz is
approximately 1/6 of the dry adiabatic lapse
rate.
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Equation of change of the dew-point temperature can be written in form of a change of 
dew-point deficit: 𝑇 − 𝑇0

When 𝑇 = 𝑇0, the saturation level has been reached, and a value of 𝑧%&% can be 
determined by integrating from initial values 0, 𝑇" − 𝑇0" to the saturation state 𝑧%&% , 0 . 
𝑇" − 𝑇0" is the dew-point depression at the surface.

At saturation level, 𝑇 becomes equal to 𝑇0 (and to 𝑇%&%).  

The lifting condensation level (LCL), 𝑧%&% corresponds to the level where water vapor
becomes saturated. 
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For a parcel lifted from the surface, the value of 𝑧%&% can be estimated

(assuming ⁄𝑑𝑇0 𝑑𝑧 = − ⁄1 6 Γ0):

Calculation of the lifting condensation level provides a good estimate of the cloud base
height for clouds that form by adiabatic ascent. 

𝑧%&% ≈ 0.12 𝑇" − 𝑇0" km
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ADIABATIC
AND PSEUDO-ADIABATIC
PROCESSES

1. Wet adiabatic lapse rate / saturated adiabatic lapse rate
2. Pseudo-adiabatic process
3. Water condensed in pseudo-adiabatic process
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Wet adiabatic lapse rate

/3519

𝑑ℎ = 𝑐(𝑑𝑇 + 𝐿#$𝑑𝑞$

𝑑ℎ = 𝛿𝑞 + 𝑣𝑑𝑝

First Law of thermodynamics for 
adiabatic processes

𝑐(𝑑𝑇 + 𝐿#$𝑑𝑞$ − 𝑣𝑑𝑝 = 0

Water vapor is saturated

𝑞$ = 𝑞! 𝑇, 𝑝
𝑑𝑞$ = 𝑑𝑞! =

𝜕𝑞!
𝜕𝑇 𝑑𝑇 +

𝜕𝑞!
𝜕𝑝 𝑑𝑝

If expansion work occurs fast enough the heat transfer with the environment remains
negligible. 

If no moisture precipitates out, the parcel is closed and its behavior above the LCL is
described by a reversible saturated adiabatic process.
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𝑐(𝑑𝑇 + 𝐿#$
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𝑇 𝛽,𝑑𝑇 − 𝐿#$
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= 𝑔
1 + 𝑞!𝛽(
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𝑐( + 𝑞!𝛽,
𝐿#$
𝑇

Saturated moist adiabatic lapse rate:

It is convenient to express the partial derivatives of 𝑞! as logarithmic partial derivatives:
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We will calculate 𝛽( and 𝛽,.
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𝛽, =
𝐿#$
𝑅$𝑇

𝛽( ≈
5 400 𝐾

𝑇

𝑑 ln 𝑒!
𝑑𝑇 =

𝐿#$
𝑅$𝑇1

Clausius-Clapeyron 
equation

𝛽(

𝛽,
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Saturated moist adiabatic lapse rate
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Γ! = 𝑔
1 + 𝑞!𝛽,

𝑅$
𝑅

𝑐( + 𝑞!𝛽,
𝐿#$
𝑇

Γ! = Γ0
𝑐(0
𝑐(

1 + 𝑞!𝛽,
𝑅$
𝑅

1 + 𝑞!𝛽,
𝐿#$
𝑐(𝑇

Γ0 =
𝑔
𝑐(0

Γ! ≡ −
𝑑𝑇
𝑑𝑧 = 𝛾Γ0

𝛾 =
𝑐(0
𝑐(

1 + 𝑞!𝛽,
𝑅$
𝑅

1 + 𝑞!𝛽,
𝐿#$
𝑐(𝑇

𝑐( = 𝑞0𝑐(0 + 𝑞!𝑐($ + 𝑞#𝑐#

𝑅 = 𝑞0𝑅0 + 𝑞!𝑅$

𝛽, =
𝐿#$
𝑅$𝑇

𝛽( ≈
5 400 𝐾

𝑇𝛾 ≤ 1



Lecture 9 (2022-2023)
/3523

If no moisture precipitates out, the parcel is closed and and its behavior above the LCL is
described by a reversible saturated adiabatic process.

The process depends weakly on the abundance of condensate present (e.g., on how much 
the system’s enthalpy is represented by condensate). 

Because the condensate is present only in trace abundance, the variation of condensate
unnecessarily complicates the parcel’s description under saturated conditions. 

A simplification is proposed

Pseudo-adiabatic process: the system is treated as open and condensate is removed
(added) immediately after (before) it is produced (destroyed). 
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A pseudo-adiabatic change of state may be constructed in two legs:

1. Reversible saturated adiabatic expansion (compression), which results in the 
production (destruction) of condensate of mass dmc and a commensurate release
(absorption) of latent heat to (from) the gas phase

2. Removal (addition) of condensate of mass dmc
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Wet adiabatic vs pseudo-adiabatic 
lapse rate
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Γ! = 𝛾Γ0 𝛾 =
𝑐(0
𝑐(

1 + 𝑞!𝛽,
𝑅$
𝑅

1 + 𝑞!𝛽,
𝐿#$
𝑐(𝑇

𝑐( = 𝑞0𝑐(0 + 𝑞!𝑐($ + 𝑞#𝑐#

𝑅 = 𝑞0𝑅0 + 𝑞!𝑅$

Wet adiabatic lapse rate: 

𝑞0 + 𝑞! + 𝑞# = 1 and 𝑞0 = 𝑐𝑜𝑛𝑠𝑡 , 𝑞! + 𝑞# = 𝑐𝑜𝑛𝑠𝑡

Pseudo-adiabatic lapse rate:

𝑞# = 0, 𝑞0+𝑞! = 1
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Simplified version of Γ!
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Γ! = 𝛾Γ0 𝛾 =
𝑐(0
𝑐(

1 + 𝑞!𝛽,
𝑅$
𝑅

1 + 𝑞!𝛽,
𝐿#$
𝑐(𝑇

⟶ 𝛾 =
1 + 𝑞!𝐿#$𝑅0𝑇

1 + 𝑞!𝐿#$1
𝑐(0𝑅$𝑇1

In many textbooks a simplified version of Γ! is presented.

𝑅 ⟶ 𝑅0

𝑐( ⟶ 𝑐(0
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Non-dimensional
lapse rate 𝛾
• pressure: 1 000 hPa
• the air initially saturated at

300 K
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Γ! = 𝛾Γ0

𝛾 =
𝑐(0
𝑐(

1 + 𝑞!𝛽,
𝑅$
𝑅

1 + 𝑞!𝛽,
𝐿#$
𝑐(𝑇

Γ! < Γ0
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Non-dimensional
lapse rate 𝛾
• pressure: 800 hPa
• the air initially saturated at

300 K
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Γ! = 𝛾Γ0

𝛾 =
𝑐(0
𝑐(

1 + 𝑞!𝛽,
𝑅$
𝑅

1 + 𝑞!𝛽,
𝐿#$
𝑐(𝑇

Γ! < Γ0
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Non-dimensional
lapse rate 𝛾
• pressure: 1000 hPa
• pressure: 800 hPa
• the air initially saturated at

300 K
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Γ! = 𝛾Γ0

𝛾 =
𝑐(0
𝑐(

1 + 𝑞!𝛽,
𝑅$
𝑅

1 + 𝑞!𝛽,
𝐿#$
𝑐(𝑇

Γ! < Γ0
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Difference between
pseudo-adiabatic and 
simplified pseudo-
adiabatic normalised
lapse rates

• pressure: 1 000 hPa
• the air initially saturated at

300 K
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Γ! = 𝛾Γ0

𝛾 =
𝑐(0
𝑐(

1 + 𝑞!𝛽,
𝑅$
𝑅

1 + 𝑞!𝛽,
𝐿#$
𝑐(𝑇

Γ! < Γ0
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Water condensed in adiabatic
process
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Adiabatic enthalpy equation of a closed system: 
dry air, water vapor, condensed water:

𝑑ℎ = 𝑐(𝑑𝑇 + 𝐿#$𝑑𝑞! ; 𝑑ℎ = 𝛿𝑞 + 𝑣𝑑𝑝

0 = 𝑐(𝑑𝑇 + 𝐿#$𝑑𝑞! − 𝑣𝑑𝑝

𝑑𝑞# = −𝑑𝑞! =
𝑐(
𝐿#$

𝑑𝑇 −
𝑣
𝐿#$

𝑑𝑝 𝑑𝑝 = −
𝑔
𝑣 𝑑𝑧

𝑑𝑞# =
𝑐(
𝐿#$

𝑑𝑇 +
𝑔
𝐿#$

𝑑𝑧

𝑑𝑞# =
𝑐(
𝐿#$

𝑑𝑇
𝑑𝑧 +

𝑔
𝑐(

𝑑𝑧 Γ0 =
𝑔
𝑐(0

≈
𝑔
𝑐(

, Γ! = −
𝑑𝑇
𝑑𝑧

𝑑𝑞# ≅
𝑐(
𝐿#$

Γ0 − Γ! 𝑑𝑧
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The amount of water condensed in a rising adiabatic parcel increases with the height above
the cloud base and increases with increasing temperature at the cloud base. 

For shallow clouds (cloud depth not bigger than ca. 300-500 m, for instance stratocumulus 
clouds) it can be assumed that the amount of condensed water increases linearly with 
height above the cloud base (h). 

The rate of this increase (𝑐4) is approximately constant and depends on temperature and 
pressure at the cloud base. 

Liquid Water Content (LWC) is the amount of liquid water per unit volume:

For shallow clouds one can assume that the air density is constant, therefore:

𝐿𝑊𝐶 = 𝑐5 𝑇, 𝑝 F ℎ ; 𝑐5 = 𝜌
𝑐(
𝐿#$

Γ0 − Γ!
𝑔
𝑚6

𝑞# ℎ = 𝑐4 𝑇, 𝑝 F ℎ ; 𝑐4 =
𝑐(
𝐿#$

Γ0 − Γ!
𝑔

𝑘𝑔 F 𝑚

𝐿𝑊𝐶 = 𝑞# F 𝜌 ;      𝜌 − density of the air
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20m

60m

100m

140m

180m

17m

51m

85m

119m

153m

N=50 cm-3

Hbase=1278 m
N=255 cm-3

Hbase=844 m

𝑐5 = 1.9 F 1027
𝑔
𝑚6 𝑐5 = 2 F 1027

𝑔
𝑚6
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𝑐! = 1.7 & 10"#
𝑔

𝑘𝑔 & 𝑚


