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Equilibrium conditions for a homogeneous system:

• thermal equilibrium

• mechanical equilibrium (at most an infinitesimal pressure difference exists between the 
system and its environment).

A heterogeneous system must also be in: 

• chemical equilibrium.

No conversion of mass occurs from one phase to the other.

Chemical equilibrium requires a certain state variables to have no difference between the 
phases present. 
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For a homogeneous system, two intensive properties describe the thermodynamic state. 

Only two state variables may be varied independently, so a homogeneous system has two
thermodynamic degrees of freedom.

For a heterogeneous system, each phase may be regarded as a homogeneous sub-system, 
one that is ‚open’ due to exchanges with the other phases present. 

The number of intensive properties that describes the thermodynamic state is proportional
to the number of phases present. However, thermodynamic equilibrium between phases
introduces additional constraints that actually reduce the degrees of freedom of a 
heterogeneous system below those of a homogeneous system. 

The system we consider is a two-component mixture of: 

• dry air

• water (existing in vapor and possibly one condensed phase). 
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Z – any extensive variable

g – gas (air or vapor)
c – condensate
𝑛! , 𝑛" , 𝑛#– numer of mols of dry air, vapor
and condensate

Changes of the extensive property Z of the individual
subsystems are:

𝑍$%$ = 𝑍& + 𝑍#

𝑍& = 𝑍& 𝑝, 𝑇, 𝑛! , 𝑛"

𝑍# = 𝑍# 𝑝, 𝑇, 𝑛#

𝑑𝑍& =
𝜕𝑍&
𝜕𝑇 '(

𝑑𝑇 +
𝜕𝑍&
𝜕𝑝 )(

𝑑𝑝 +
𝜕𝑍&
𝜕𝑛! ')(!

𝑑𝑛! +
𝜕𝑍&
𝜕𝑛" ')("

𝑑𝑛"

𝑑𝑍# =
𝜕𝑍#
𝜕𝑇 '(

𝑑𝑇 +
𝜕𝑍#
𝜕𝑝 )(

𝑑𝑝 +
𝜕𝑍#
𝜕𝑛# ')

𝑑𝑛#
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It is convenient to introduce a state variable that measures how the extensive property Z of 
the total system changes with an increase of one of the compenents, for example, through
a conversion of mass from one phase to another. 

Isobaric change of phase occurs isothermally. 

The foregoing state variable is expressed most conveniently for processes that occur at
constant pressure and temperature. 

The partial molar property is defined as the rate at which an extensive property changes
with a change in the numer of mols of the kth species under isobaric and isothermal
conditions.

For a system of dry air and water in which the latter appears only in trace abundance those
quantities are nearly the same as molar properties. 

̅𝑧* =
𝜕𝑍
𝜕𝑛* ')(

�̃�* =
𝑍
𝑛*
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Incorporating the new notation:

The value of the total extensive property Z is:

𝑑𝑍& =
𝜕𝑍&
𝜕𝑇 '(

𝑑𝑇 +
𝜕𝑍&
𝜕𝑝 )(

𝑑𝑝 + ̅𝑧!𝑑𝑛! + ̅𝑧"𝑑𝑛"

𝑑𝑍# =
𝜕𝑍#
𝜕𝑇 '(

𝑑𝑇 +
𝜕𝑍#
𝜕𝑝 )(

𝑑𝑝 + ̅𝑧#𝑑𝑛#

𝑑𝑍$%$ = 𝑑𝑍& + 𝑑𝑍# =
𝜕𝑍$%$
𝜕𝑇 '(

𝑑𝑇 +
𝜕𝑍$%$
𝜕𝑝 )(

𝑑𝑝 + ̅𝑧!𝑑𝑛! + ̅𝑧"𝑑𝑛" + ̅𝑧#𝑑𝑛#
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If the system is closed, the abundance of individual components is preserved, so:

𝑑𝑛! = 0

𝑑 𝑛" + 𝑛# = 0

𝑑𝑍$%$ =
𝜕𝑍$%$
𝜕𝑇 '(

𝑑𝑇 +
𝜕𝑍$%$
𝜕𝑝 )(

𝑑𝑝 + ̅𝑧" − ̅𝑧# 𝑑𝑛"

𝑍$%$ = 𝑛! ̅𝑧! + 𝑛" ̅𝑧" + 𝑛# ̅𝑧#
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The chemical potential for the kth species is defined as the partial molar Gibbs function:

A criterion for two phases to be at equilibrium with one another:

• in addition to thermal and mechanical equilibrium, those phases
must also be in chemical equilibrium. 

Chemical equilibrium is determined by the diffusion of mass from one 
phase to the other. This is closely related to the Gibbs function. 

Specific Gibbs function is: 

Gibbs function for a 
homogeneous system

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑝 +2
*

𝜕𝐺
𝜕𝑛* ')(

𝑑𝑛*
𝐺 = 𝐻 − 𝑇𝑆

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑝

𝜇* = �̅�* =
𝜕𝐺
𝜕𝑛* ')(

𝑔* =
𝐺*
𝑚*

=
𝐺*
𝑛*

1
𝑀*

=
𝜇*
𝑀*

It is the same as the molar Gibbs function 9𝑔* .

𝑀* is a molar mass
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For the gas phase:

In a constant 𝑛! and 𝑛" process (e.g. one not involving a phase transformation), this
expression must reduce to the fundamental relation for a homogeneous closed system:

We can identify:

Since those relations involve only state variables, they must hold irrespective to path
(e.g.whether or not a phase transformation is involved). Thus:

𝑑𝐺& =
𝜕𝐺&
𝜕𝑇 '(!("

𝑑𝑇 +
𝜕𝐺&
𝜕𝑝 )(!("

𝑑𝑝 + 𝜇!𝑑𝑛! + 𝜇"𝑑𝑛"

𝑑𝐺& = −𝑆&𝑑𝑇 + 𝑉&𝑑𝑝

𝜕𝐺&
𝜕𝑇 '(!("

= −𝑆&
𝜕𝐺&
𝜕𝑝 )(!("

= −𝑉&

𝑑𝐺& = −𝑆&𝑑𝑇 + 𝑉&𝑑𝑝 + 𝜇!𝑑𝑛! + 𝜇"𝑑𝑛"
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For the heterogeneous system to be in thermodynamic equilibrium, the pressures and 
temperatures of the different phases present must be equal. 

There can be no conversion of mass from one phase to another.

The fundamental relation for a system in equilibrium:

for the gas phase:

for the whole system:

for a transformation of phase that occurs at constant pressure and temperature the above

expression must apply irrespective of the sign of 𝑑𝑛". Therefore 𝜇!= 𝜇" .

A similar analysis leads to relations:

𝑑𝐺& = −𝑆&𝑑𝑇 + 𝑉&𝑑𝑝 + 𝜇!𝑑𝑛! + 𝜇"𝑑𝑛"

𝑑𝐺# = −𝑆#𝑑𝑇 + 𝑉#𝑑𝑝 + 𝜇#𝑑𝑛#

𝑑𝐺$%$ = −𝑆$%$𝑑𝑇 + 𝑉$%$𝑑𝑝 + 𝜇" − 𝜇# 𝑑𝑛"

𝐺$%$ = 𝑛! 9𝑔! + 𝑛" 9𝑔" + 𝑛# 9𝑔#

for the condensed phase: 𝑑𝑛! = 0
𝑑 𝑛" + 𝑛# = 0

𝑑𝐺$%$ ≥ −𝑆$%$𝑑𝑇 + 𝑉$%$𝑑𝑝 + 𝜇" − 𝜇# 𝑑𝑛"

𝑝 = 𝑐𝑜𝑛𝑠𝑡, 𝑇 = 𝑐𝑜𝑛𝑠𝑡 ⟹ 𝑑𝐺$%$ ≥ 𝜇" − 𝜇# 𝑑𝑛"
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In thermodynamics, the Gibbs–Duhem equation describes the relationship between 
changes in chemical potential for components in a thermodynamic system.

A derivatives:

First Law of Thermodynamics:

In a system with specified intensive parameters p and T  only C-1 components of a system 
consisting of C components can have independent values of chemical potential. 

C– number of components𝑈 = 𝑇𝑆 − 𝑝𝑉 +2
+,-

.

𝜇+𝑛+

𝑑𝑈 = 𝑇𝑑𝑆 + 𝑆𝑑𝑇 − 𝑝𝑑𝑉 − 𝑉𝑑𝑝 +2
+,-

.

𝜇+𝑑𝑛+ +2
+,-

.

𝑛+𝑑𝜇+

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑝𝑑𝑉 +2
+,-

.

𝜇+𝑑𝑛+

(1)

(2)

(1)-(2) 0 = 𝑆𝑑𝑇 − 𝑉𝑑𝑝 +2
+,-

.

𝑛+𝑑𝜇+

2
+,-

.

𝑛+𝑑𝜇+ = −𝑆𝑑𝑇 + 𝑉𝑑𝑝
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C – the number of components; P – the number of phases

• C-1 : the number of intensive variables that define each phase
• 2 : pressure and temperature
• for P coexisting phases, the total number of of intensive variables defining the system is

(C-1)P
• C(P-1) : the number of variables that cannot be independently varied; the chemical

potential of each component must be equal for all phases.

This rule enables us to determine the number of intensive variables which may be specified
in determining the state, without changing the number of components and/or phases.

F=(C-1)P+2-C(P-1)

F=C-P+2

The number of degrees of freedom (F) equals the total number of intensive variables
required to specify the complete system minus the number of these variables that can be 
independently varied
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In the studies of atmosphere we consider the following systems:

• moist air (dry air + water vapor): C=2; P=1

• liquid cloud (dry air + water vapor + liquid water drops): C=2; P=2

• mixed phase clouds (dry air + water vapor + liquid water drops + ice particles): C=2; P=3
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• P=1 (only water vapor), F=2 
Two variables completely specify the 
state: e.g. pressure and 
temperature. The equation of state 
is the ideal gas law 𝑝 = 𝑝 𝑣, 𝑇

• P=2 (two phases), F=1
One free state variable: e.g. liquid 
and vapor in equilibrium, 
the state is specified only by T; the 
equation of state takes a form 𝑝 𝑇

• P=3 (three phases), F=0
Occurs at only one point (p,T), called 
the triple point.

If we apply the Gibbs rule to water: a one -component system (C=1), we have

F=3-P

𝑇! = 647 K, 𝑝! = 218.8 atm (1atm = 1013.25 hPa)
𝑇" = 273 K, 𝑝" = 6.1 hPa

𝑝 𝑇

𝑝 𝑇

𝑝 𝑇

𝑝 = 𝑝 𝑣, 𝑇
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C

V

p(mb)

Vapor

Solid

Tt = 0oC

Liquid

Liquid
and
Vapor

Solid
and Vapor

Tc =374oC

T1

6.11

221 000

T

B AC

𝑝 = 𝑝 𝑣, 𝑇

𝑝 𝑇
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The specifc latent heat of transformation is defined as the heat absorbed by the system 
during an isobaric phase transition (it is convenient to use the enthalpy 𝑑ℎ = 𝛿𝑞 + 𝑣𝑑𝑝):

dh – the enthalpy of phase transformation

Heat transferred during an isobaric process between two homogeneous states of the same 
phase is proportional to the change of temperature.  

Heat transfer during an isobaric process between two phases of a heterogeneous system 
involves no change of temperature.  

The heat transfer results in a conversion of mass from one phase to the other (which is
associated with a change of internal energy) and in work being performed when the 
system’s volume changes. 

𝛿𝑞 = 𝑐'𝑑𝑇

𝐿 = 𝛿𝑞' = 𝑑ℎ
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The difference of enthalpy between phases ‘v’ i ‘l’ changes with temperature. 
For vaporisation we have:

Consider two homogeneous sytems: 

one entirely in phase ‘v’ and another entirely in phase ‘l’ (e.g. v- vapor, l – liquid).

An isobaric process between two homogeneous states that involves only one phase:

Specific latent heats of transformations:

1. liquid ® vapor (vaporization): 𝐿/" = ℎ" − ℎ/
2. solid ® liquid (fusion):              𝐿+/ = ℎ/ − ℎ+
3. solid ® vapor (sublimation):   𝐿+" = ℎ" − ℎ+

The specific heats are related as:     𝐿+" = 𝐿+/ + 𝐿/"

Like specific heat capacity, latent heat is a property of the system and thus it depends on 
the thermodynamic state, which may be expressed 𝐿 = 𝐿(𝑇).

𝑑ℎ" =
𝜕ℎ"
𝜕𝑇 '

𝑑𝑇 = 𝑐'"𝑑𝑇 𝑑ℎ/ =
𝜕ℎ/
𝜕𝑇 '

𝑑𝑇 = 𝑐/𝑑𝑇

∆ℎ = ℎ" − ℎ/ ⟹ 𝑑 ∆ℎ = 𝑐'" − 𝑐/ 𝑑𝑇
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Kirchhoff’s equation:

At 0oC the latent heats of water have the values:

The enthalpy difference equals the latent heat of transformation (𝐿):

Regarding the specific heats as constants, we may integrate the Kirchhoffs’s
equation e.g. for liquid– vapor transformation:

The specific heat capacities depend weakly on both temperature and pressure. 𝑐'" and 𝑐'/
vary by only 1% over the temperature range 0oC – 30oC (Table on the next page).

T

h hl

hv

Dh
𝐿 = 𝛿𝑞' = ∆ℎ 𝑑 ∆ℎ = 𝑐'" − 𝑐/ 𝑑𝑇

∆𝑐'𝑑𝐿
𝑑𝑇 = ∆𝑐'

𝐿/" 𝑇 = 𝐿/"0 − 𝑐/ − 𝑐'" J 𝑇 − 𝑇0

𝐿"/0 = 2.50 J 101 Jkg2-

𝐿/+0 = 3.34 J 103 Jkg2-

𝐿"+0 = 2.83 J 101 Jkg2-
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for an isobaric transformation

For fusion/melting dv is negligible: 

For vaporization and sublimation the volume of vapor is much 
greater than the volume of liquid or ice:

The latent heat (L) corresponds to a change of enthalpy during an
isobaric phase transformation (p=const). 

The change of specific internal energy : 

𝑑ℎ = 𝛿𝑞 − 𝑣𝑑𝑝

𝑑𝑝 = 0

𝑑ℎ = 𝛿𝑞 = 𝐿𝑑𝑢 = 𝛿𝑞 − 𝑝𝑑𝑣 ⟶ 𝑑𝑢 = 𝐿 − 𝑝𝑑𝑣

𝑑𝑣 ≅ 0
𝑑𝑢 = 𝐿

𝑑𝑣 ≅ 𝑣"
𝑑𝑢 = 𝐿 − 𝑅"𝑇

𝑝𝑑𝑣 ≅ 𝑝𝑣" = 𝑅"𝑇
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The variation of specific heat with pressure:

Maxwell’s relation

the relation may be determined easily from 
observations of temperature and specific
volume

𝑐'/ =
𝜕ℎ
𝜕𝑇 '

⟶ 𝑐'/ =
𝜕𝑢
𝜕𝑇

+ 𝑝
𝜕𝑣
𝜕𝑇

𝜕𝑐'/
𝜕𝑝 =

𝜕4𝑢
𝜕𝑇𝜕𝑝 + 𝑝

𝜕4𝑣
𝜕𝑇𝜕𝑝

ℎ = 𝑢 + 𝑝𝑣

𝑑𝑢 = 𝑇𝑑𝑠 − 𝑝𝑑𝑣

𝜕𝑢
𝜕𝑝 )

= 𝑇
𝜕𝑠
𝜕𝑝 )

− 𝑝
𝜕𝑣
𝜕𝑝 )

𝜕4𝑢
𝜕𝑝𝜕𝑇 = −𝑇

𝜕4𝑣
𝜕𝑇4 − 𝑝

𝜕4𝑣
𝜕𝑝𝜕𝑇

𝜕𝑠
𝜕𝑝 )

= −
𝜕𝑣
𝜕𝑇 '

𝜕𝑐'/
𝜕𝑝 = −𝑇

𝜕4𝑣
𝜕𝑇4

(1)

(2)

(1)+(2)
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Specific heat capacity of water
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The specific heat of pure water at surface pressure has been determined empirically to be:

𝑐'/ 𝑇 = 4217.4 − 3.72083 J 𝑡 + 0.1412855 J 𝑡4 − 2.654387 J 1025𝑡5 + 2.093236 J 1023𝑡6

𝑡 ℃ = 𝑇 𝐾 − 273.15
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Since the entropy is an exact differential:

Dividing by 𝑑𝑇 while holding p constant:

Maxwell’s relation

Because of the near incompressibility of water, there is very little difference in the values
of 𝑐'/ and 𝑐"/; it is designed by 𝑐/.

𝑇𝑑𝑠 = 𝑇
𝜕𝑠
𝜕𝑇 "

𝑑𝑇 + 𝑇
𝜕𝑠
𝜕𝑣 )

𝑑𝑣

𝑇
𝜕𝑠
𝜕𝑇 '

= 𝑇
𝜕𝑠
𝜕𝑇 "

+ 𝑇
𝜕𝑠
𝜕𝑣 )

𝜕𝑣
𝜕𝑇 '

𝑐' = 𝑇
𝜕𝑠
𝜕𝑇 '

𝑐" = 𝑇
𝜕𝑠
𝜕𝑇 "

𝑐'/ = 𝑐"/ + 𝑇
𝜕𝑝
𝜕𝑇 "

𝜕𝑣
𝜕𝑇 '

𝜕𝑠
𝜕𝑣 )

=
𝜕𝑝
𝜕𝑇 "

𝑐'/ − 𝑐"/ = −𝑇
𝜕𝑝
𝜕𝑣 )

𝜕𝑣
𝜕𝑇 '

4

𝜕𝑝
𝜕𝑇 "

= −
𝜕𝑝
𝜕𝑣 )

𝜕𝑣
𝜕𝑇 '
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Latent heats; specific heats

/3028Tabele 4.2: Curry, J.A. and P.J. Webster, Thermodynamics of Atmospheres &Oceans 
Smithsonian Meteorological Tables

T
(ºC)

Llv

(106J kg-1)
Liv

(106J kg-1)
ci

(J kg-1 K-1)
cl

(J kg-1 K-1)
cpv

(J kg-1 K-1)

-40 2.603 2.839 1814 4773 1856

-30 2.575 2.839 1885 4522 1858

-20 2.549 2.838 1960 4355 1861

-10 2.525 2.837 2032 4271 1865

0 2.501 2.834 2107 4218 1870

10 2.477 4193 1878

20 2.453 4182 1886

30 2.430 4179 1898

40 2.406 4179 1907

good approximation

The specific heat capacities depend weakly on both temperature and pressure. 𝑐'" and 𝑐/
vary by only 1% over the temperature range 0oC – 30oC.
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Variation of latent heats
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Latent heat of condensation 𝐿/" Latent heat of sublimation 𝐿+"

Assumption of constant values of specific heats is correct. 
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Is the assumption L = const correct?
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Latent heat of condensation 𝐿/" Latent heat of sublimation 𝐿+"

It is INCORRECT for latent heat of condensation.
It is CORRECT for latent heat of sublimation. 


