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Liu, Atmos. Res., 12 (1995); Yano, J.-I., JAS, 76 (2019)
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Closed cloud parcel The most likely f maximizes the spectral

entropy:
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Liu, Atmos. Res., 12 (1995); Yano, J.-I., JAS, 76 (2019)



Weibull distribution

Closed cloud parcel f(T’) ~T exp( ﬂr )

Liu, Atmos. Res., 12 (1995)



Which is the least likely distribution?
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Maximum energy principle



Closed cloud parcel The least likely f maximizes the

populational energy:

Liu, Atmos. Res., 12 (1995)

E = Elatent + Esurface + e
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populational energy:

» constraints

Liu, Atmos. Res., 12 (1995)

E = Elatent + Esurface + e



Monodisperse cloud

Closed cloud parcel f(?") ~ 5(7" - <7“>)

Liu, Atmos. Res., 12 (1995)
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Most likely Least likely

Many issues:
- “no dynamics”
- equilibrium x non-equilibrium

- closed system Xx open system



Let us describe the condensation process



Diffusional growth
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Equation for f(r,t)
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Equation for f(r,t)
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Narrow size distribution!
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Eulerian stochastic model
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Numerical simulation
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Kinetic equation for f(r;x,t)
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Kinetic equation for f(r;x,t)
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Kinetic equation for f(r;x,t)
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Slow microphysics ‘

(u'f') = —KV(f) 1

> L

K — turbulent diffusivity

Cannot explain the observed spectrum broadening

Buikov, M. V. (1960's)




Fast microphysics

(W'f)=-KV(f) +7

Ffhy=127+7



Fast microphysics

(#fy=17+7

supersaturation vertical velocity
fluctuations fluctuations



“w(t)



ds S
dt 7

T — phase relaxation time
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Slow microphysics (7 big)

(S'w'y =0

Fast microphysics (7 small)

S(t) ~w(t)



Condensation reversibility

S(t) ~ w(t)

A. Khain et al., Atmos. Res., 55 (2000)



Condensation reversibility

S(t) ~ w(t)

NV A

dr3

m ~ e Crw(t) m(z = h) —m(z =0) = Cah

A. Khain et al., Atmos. Res., 55 (2000)



Growth rate

Mass rate

. 2 .
mo~ —— ~TTTr T
dt

Supersaturation absorption is faster for larger droplets



Effective microscale supersaturation
Seft = (S) (r) "' r

 DSu_ D(S)
Teff = ” ~ <T’>

Suppress the growth of smaller droplets



Effective microscale supersaturation

Ser = (S) (r) o

DSer _ D(S)

Teff = ” <T’>
[
Fluctuation in growth rate
., DS
(r)

Suppress the growth of smaller droplets



Direct Numerical Simulations
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Paoli and Sharif, JAS, 66 (2009)




(W'f) = - KV(f) = K10:(f)



(W'f) = - KV(f) = K10:(f)

(F'f') = — KoV (f) — K30:(f)



(W'f) = - KV(f) = K10:(f)

(7' f) = — KoV (f) — K30:(f)

K; — effective diffusion coefficients



Size spectra (cm= um)
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Khvorostyanov and Curry, JAS, 66 (1999)
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Size spectra (cm= um)

Gamma distribution

f(r) ~ 7P exp(=pr)

Droplet radius (um)

Khvorostyanov and Curry, JAS, 66 (1999)

» power law p ~ 5 — 10

» exponential tail

» only one mode!



Lagrangian stochastic model



Lagrangian model
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. A Tm ~ eddy turnover time (mixing)

Celani et al., EPL, 70 (2005); Grabowski and Abade, JAS, 74 (2017)



Lagrangian model

ds! S; S
® °oe0 T - ot
> S
[ ) S 1
(W) ° ¢ lW'I - Te ~ NG (condensation)
i |%
. A Tm ~ eddy turnover time (mixing)

» W/(t): prescribed stochastic process.

Celani et al., EPL, 70 (2005); Grabowski and Abade, JAS, 74 (2017)



Kinematic framework

Synthetic turbulent-like flow



Turbulent-like flow
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Vertical profiles
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Size distribution at different heights
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Size distribution at different heights
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z (m)

Size distribution at different heights
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THANK YOU!



