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How much time do we have to act



More clouds, less warming

Clouds dominate uncertainties in climate projections
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SSP3-7.0 scenario (IPCC, 2022)

Schneider et al., 2017:  
Climate goals and computing the future of clouds




Cloud scales: 
~10-100 m

Global model: 

~10-50 km resolution

NASA MODIS:  August 2018 clouds off the west coast of North America

Clouds cannot be resolved in 
climate models

Need to represent subgrid-scale processes:  
turbulence, convection and cloud microphysics

Cloud 
microphysics 
scales: ~10-6 m

HOLIMO @ETH Zurich Field measurements with the holographic imager

~100 km



Clouds cannot be resolved in 
climate models

Morrison et al. 2020  
Confronting the Challenge of Modeling Cloud and 
Precipitation Microphysics
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Clouds cannot be resolved in 
climate models

Knopf and Alpert 2023: 
Atmospheric ice nucleation

Murray et. al.,  2012: 
Ice nucleation by particles immersed in supercooled cloud droplets


Morrison et al., 2020:  
Confronting the Challenge of Modeling Cloud and 
Precipitation Microphysics



CliMA is building a 
new Earth system 
model whose 
components learn 
from observational 
and simulated data

Targeted High-Resolution Simulations

Earth
System
Model
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Outline

• Physics based parameterizations 

• Data driven calibrations 

• Software design 



?

A unified physics-based model of turbulence, convection, …
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A unified physics-based model of turbulence, convection, …



• Domain decomposed into sub-domains:  
coherent updrafts and isotropic 
environment 

• Coarse-grain fluid equations by 
conditionally averaging over sub-
domains,  
leading to exact conservation laws
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Tracers

Continuity

Closure functions

Tan et al., 2018: An Extended Eddy-Diffusivity Mass-Flux Scheme for Unified Representation of Subgrid-Scale Turbulence and Convection  
Cohen et al. 2020: Unified Entrainment and Detrainment Closures for Extended Eddy‐Diffusivity Mass‐Flux Schemes 
Lopez-Gomez et al., 2020: A Generalized Mixing Length Closure for Eddy‐Diffusivity Mass‐Flux Schemes of Turbulence and Convection

Microphysics, 
aerosol, …

A unified physics-based model of turbulence, convection, …



𝜃𝑙

𝑞𝑡

𝜃𝑙

𝑞𝑡

• SGS scheme provides information on the sub-grid 
scale environment (co)variances of (qt, ) 
and mean updraft values


• When coupling with cloud microphysics scheme  
we assume a distribution shape:  
Log-normal or Gaussian 


• Microphysics autoconversion and accretion 
sources are computed by integrating over 


• Environment: Numerical quadratures


• Updrafts: Sum of  functions


• Only the grid mean precipitation is included


• Precipitation evaporation, deposition, sublimation 
and melting experience the grid mean conditions

θ

P(θ, qt)

δ
S = ∫ ∫ f(θ, qt)P(θ, qt)dθdqt

A unified physics-based model of turbulence, convection and clouds
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A unified physics-based model of turbulence, convection and clouds



CloudMicrophysics.jl

A library of bulk microphysics and aerosol schemes 

Currently available:
1-moment microphysics (cloud water and ice, rain, snow)


2-moment microphysics (Seifert and Beheng 2006, + 4 autoconversion and accretion options)


Aerosol activation (Abdul-Razzak and Ghan 2000 + ML calibrated options)


Ice nucleation (Mohler et al 2006, water activity based: Knopf and Alpert 2013, Koop et al 2000)


Aerosol nucleation (CLOUD experiments at CERN, Duane et. al. 2016, Kirkby et al 2016, Riccobono et al 2014) 


Precipitation susceptibility tests (Glassmeier and Lohmann 2016) 

Terminal velocity (Chen et. al. 2022)
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CloudMicrophysics.jl

More ice nucleation paths (?) 
Aerosol model (?) 

P3 snow/ice microphysics scheme (Morrison and Milbrandt 2015)

Next development steps:

A library of bulk microphysics and aerosol schemes 

Currently available:
1-moment microphysics (cloud water and ice, rain, snow)


2-moment microphysics (Seifert and Beheng 2006, + 4 autoconversion and accretion options)


Aerosol activation (Abdul-Razzak and Ghan 2000 + ML calibrated options)


Ice nucleation (Mohler et al 2006, water activity based: Knopf and Alpert 2013, Koop et al 2000)


Aerosol nucleation (CLOUD experiments at CERN, Duane et. al. 2016, Kirkby et al 2016, Riccobono et al 2014) 


Precipitation susceptibility tests (Glassmeier and Lohmann 2016) 

Terminal velocity (Chen et. al. 2022)

Replace unknown parametric functions with NNs


Calibrate with observations (e.g., CloudSat, MODIS)



“dynamical core”

“physics” parameterizations

Summary



Outline

• Physics based parameterizations 

• Data driven calibrations 

• Software design 



Targeted data 
acquisition

Process-level learning  
Uncertainty quantification

3D LES high resolution simulations 
of turbulence and convection

Learning from data

Lopez-Gomez et al. 2022: Training Physics-Based Machine-Learning Parameterizations With Gradient-Free Ensemble Kalman Methods   
Dunbar et al. 2022: Ensemble-based experimental design for targeted high-resolution simulations to inform climate models

for turbulence and convection model



Dycoms RF02 
Drizzling Sc trapped  

under inversion 

Rico 
Precipitating shallow trade wind convection

TRMM LBA  
Development of 

deep convection 
over Amazon

Individual test cases

Ackerman et al., 2009:  
Large-Eddy Simulations of a 

Drizzling, Stratocumulus-Topped 
Marine Boundary Layer 


Van Zanten et.al., 2011: Controls on precipitation and cloudiness in 
simulations of trade-wind cumulus as observed during RICO 


Grabowski et. al., 2006:  
Daytime convective development 

over land: A model 
intercomparison based on LBA 

observations 




manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

The log-normal SGS configuration results in more uniform precipitation profile and some432

surface precipitation. [YC: does DYCOMS RF02 has a range of LES in the original433

paper? if so it would be great to add it here in gray shading as it would show where434

our EDMF results fall with respect top a range of models (and observations if there435

are any). I believe that view compared with a range of LES our results are better then436

we make them sound.] [AJ: I’ll plot our LES against the spread from papers, so that437

we know where we fall. I did look at it before, but our LES sometimes precipitates438

more than the intercomparison. I think it would be detracting from the main story of439

the paper. For our purposes we could have just applied f(x) = Ax + B in both LES440

and EDMF and see if we get the same outcome.]441

The LWP and RWP time evolution are shown in Fig. 4. All EDMF configurations442

are able to replicate the lower bound of the LES LWP, but not its variability in both cloud443

condensate and precipitation. This is due to the deterministic nature of our EDMF scheme;444

capturing rapidly changing dynamics may likely require the implementation of stochas-445

tic terms within the model (Fleury et al., 2022). [IL: Is the LES variability mostly due446

to the anvil?]. Finally, the RWP results are noticeably improved when calibrating the447

microphysics parameters.448

Figure 3. As in Fig. 1 but for Rico. The profiles are averaged over the last 4 hours.

4.3 Deep convection449

Finally, Fig. 5 and 6 showcase the EDMF results for the deep convective case. The450

hqti profile agrees well with the LES reference for all of the EDMF SGS configurations.451

The hqli and hqii profiles show a bigger spread, and in general underestimate the amount452

of cloud condensate. Moreover, the vertical transition from liquid to ice phase is slightly453

delayed, resulting in EDMF simulations predicting more supercooled liquid and at higher454

elevations than the reference LES. The phase partitioning between cloud liquid and ice455

is diagnosed based on temperature as shown in eq. (31), and the above bias is a sign of456

updrafts being too warm when compared to LES. Nevertheless, the overall cloud con-457

–15–
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Figure 1. DYCOMS RF02 vertical profiles of hqti, hqli, and hqri averaged over the last two

hours. Top: results after calibrating dynamical parameters. Bottom: results after calibrating

dynamical and microphysical parameters. Black line shows LES results and di↵erent colors repre-

sent EDMF sensitivity to quadrature choice: Gaussian with 3 and 7 points in each dimension in

blue and purple; log-normal with 3 and 7 points in each dimension in orange and green.

Figure 2. DYCOMS RF02 timeseries of liquid water path (LWP) and rain water path

(RWP). Top: results after calibrating dynamical parameters. Bottom: results after calibrating

dynamical and microphysical parameters. Black line shows LES results and di↵erent colors repre-

sent EDMF sensitivity to quadrature choice: Gaussian with 3 and 7 points in each dimension in

blue and purple; log-normal with 3 and 7 points in each dimension in orange and green.

configurations result in di↵erent precipitation profiles. The mean and Gaussian SGS choices430

lead to more precipitation throughout the column, but no precipitation at the surface.431

–14–
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Figure 4. As in Fig. 2 but for Rico.

Figure 5. As in Fig. 2 but for TRMM LBA. Additionally the cloud ice and snow water spe-

cific humidities are shown in dashed lines. The profiles are averaged over the last two hours.

densate amount and vertical extent agree well with the LES profiles. When calibrating458

just the dynamical parameters, the amount of rain is underestimated, similar to the pre-459

viously discussed shallow convective case. However, the discrepancy is not as large. The460

EDMF snow is underestimated and the location of the maximum is lower than in the461

LES reference, with the 7x7 SGS quadrature configuration producing the best hqsi pro-462

file. Additionally calibrating the microphysics parameters, improves the rain profiles and,463

especially for the 7x7 log-normal configuration, results in higher surface precipitation val-464

–16–
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Individual test cases

Jaruga et al. in prep.

3D LES data (observations)

Calibrated SGS model 

• ~20 free parameters from SGS scheme 


• ~40 free parameters from the 
cloud microphysics scheme 
 



Shen et al. 2022: A Library of Large-Eddy Simulations Forced by Global Climate Models

Stratocumulus

Shallow cumulus

Synthetic data generation in different seasons and climates

Libraries of cases



Simple driver models 
(prescribed flow, single 
column)

Process-level learning  
Uncertainty quantification

High resolution simulations of 
particles dynamics (focus on 
PySDM and cloud microphysics)

Learning from data
for cloud microphysics and aerosol models
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CloudMicrophysics.jl

Bartman et al JOSS 2021: PySDM v1 particle-based cloud modeling package for warm-rain microphysics and aqueous chemistry 
Shipway and Hill QJRMS 2012: Diagnosis of systematic differences between multiple parametrizations of warm rain microphysics using a kinematic framework



A library of rainshaft superdroplet 
simulations with varying updraft speed, 
surface pressure and droplet 
concentration. (49 cases in total)

Calibration pipeline for bulk microphysics 
schemes against superdroplet 
simulations.

Azimi et al. 2023 (submitted):  
Training warm-rain bulk microphysics schemes using super-droplet 
simulations 

Learning from data
for cloud microphysics and aerosol models
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Learning from data
for cloud microphysics and aerosol models

Azimi et al. 2023 (submitted):  
Training warm-rain bulk microphysics schemes using super-droplet 
simulations 



Learning from data
for cloud microphysics and aerosol models 
 -> Example summer internship project

Abdul-Razzak and Ghan 2000 aerosol activation

Training in 0-dimensional parcel model, 1-mode aerosol distribution

Training in 0-dimensional parcel model, 2-mode aerosol distribution

Testing in 1-dimensional rain shaft model 

Mikhail Mints 2023



“dynamical core”

“physics” parameterizations, data driven calibrations

Summary



Outline

• Physics based parameterizations 

• Data driven calibrations 

• Software design 



Building blocks of CliMA ESM

Clima 
Parameters.jl

ClimaCore.jl

ClimaTime  
Steppers.jl

ClimaCoupler.jlClimaLSM.jl

ClimaAtmos.jl

Insolation.jl CloudMicrophysics.jl

CalibrateEDMF.jl

CalibrateEmulate  
Sample.jl

Parameter  
Estimocean.jl

Ensemble  
Kalman  

Processes.jl

RRTMGP.jl

TurbulanceConvection.jl

Thermodynamics.jl

SurfaceFluxes.jl

GriddingMachine.jl

Seawater  
Polynomils.jl

Oceannigans.jl

Clima 
Comms.jl

github.com/CliMA

Kinematic1D.jl

http://github.com/CliMA


Workflow highlights: design for ML applications

Free parameters are stored separately in 
text files (interface with ML calibration 
pipelines)

They are passed in as arguments to all functions



Workflow highlights: design planning

Discuss the design and objectives before 
starting  
 
Get feedback from software engineers and 
scientists 

Define intermediate steps



Workflow highlights: documentation



ClimaCore performance CI

Workflow highlights: testing, performance monitoring 

CloudMicrophysics performance CI



Instead of a summary:

• Climate modelling has followed mirror view approach: 


• Deducing representation from detailed first-principles


• Adding more detail leads to representing system better


• Complexity and uncertainty of the system can be tackled with physics


• Other approaches could be: 


• heuristic (prioritise generating understanding)


• predictive (prioritise predictive capabilities).


• Complexity needs to be tailored to model’s purpose. 
 

Ulrike Proske et. al. 2023: https://doi. org/10.1029/2022MS003571  
Addressing complexity in global aerosol climate model cloud microphysics.  



• Hindered understanding - model as a book-keeper of added processes


• Generative entrenchment


• Parameters


• Over-interpretation vs negligence


• No reduction in uncertainty


• Opacity, authority


• Transparency about other factors influencing model choices 

Ulrike Proske et. al. 2023: https://doi. org/10.1029/2022MS003571  
Addressing complexity in global aerosol climate model cloud microphysics.  

Instead of a summary:



We are funded by a consortium of private foundations and federal agencies, led by the 
generosity of Eric and Wendy Schmidt by recommendation of the Schmidt Futures 
program, and the National Science Foundation.


Thank you for your attention! 

ajaruga@caltech.edu

github.com/CliMA

clima.caltech.edu

mailto:ajaruga@caltech.edu
http://github.com/CliMA
http://clima.caltech.edu

