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Invigoration: increase of updraft strength
due to cloud microphysics.



Smoking Rain Clouds over
the Amazon

M. O. Andreae,’* D. Rosenfeld,?* P. Artaxo,? A. A. Costa,*
G. P. Frank,” K. M. Longo,® M. A. F. Silva-Dias®

Heavy smoke from forest fires in the Amazon was observed to reduce cloud
droplet size and so delay the onset of precipitation from 1.5 kilometers above
cloud base in pristine clouds to more than 5 kilometers in polluted clouds and
more than 7 kilometers in pyro-clouds. Suppression of low-level rainout and
aerosol washout allows transport of water and smoke to upper levels, where
the clouds appear “smoking” as they detrain much of the pollution. Elevating
the onset of precipitation allows invigoration of the updrafts, causing intense

thunderstorms, large hail, and greater likelihood for overshooting cloud tops
into the stratosphere. There, detrained pollutants and water vapor would have
profound radiative impacts on the climate system. The invigorated storms
release the latent heat higher in the atmosphere. This should substantially

affect the regional and global circulation systems. Together, these processes
affect the water cycle, the pollution burden of the atmosphere, and the dy-
namics of atmospheric circulation.

Satellite observations of pollution, aircraft observations
of the aerosols, no cloud penetrations...
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Fig. 1. Smoke aerosol distribution (D < 2.5 pm; in pg m~2) and wind field in the BL over South
America during the transect flights from Rondonia to the western Amazon. The aerosol distribution
was obtained with the use of the Geostationary Operational Environmental Satellites—~Automated
Biomass Burning Algorithm (GOES ABBA) Fire product to estimate smoke emissions and the RAMS
model to simulate their transport and removal (38). The flight track is indicated as a red line; the
study area off Fortaleza, by a blue rectangle; and letters L and F represent the locations of the LET
and FNS sounding sites, respectively (fig. S1).
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Flood or Drought: How Do Aerosols
Affect Precipitation?
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Is that really possible?



Liquid condensate freezing: the impact of latent
heating approximately balances loading effect:

0,=0( +e&,-q.)
oq — change of cloud water mixing ratio

00 ~Ly/cp 6q ~ 3107 6q  Ly~3-10°J/kg

O og ~ 3 -10° dq

Grabowski and Morrison JAS 2020



Liquid condensate freezing: the impact of latent
heating approximately balances loading effect:

0,=0( teq,—q.)
oqg — change of cloud water mixing ratio
00 ,~ 00 + O oq
00 ~Ly/cp 6q ~ 3107 6q  Ly~3-10°J/kg

O og ~ 3 -10° dq

So the condensate off-loading is the key...



e Ultrafine aerosol particles (UAP,,,) - Cloud droplets from CCN,
® CCN-size aerosol particles (CCN,, ) @ Cloud droplets from UAP

< Raindrop :é: Ice crystal O Graupel

Water supersaturation

Substantial convection and
precipitation enhancements by
ultrafine aerosol particles

Jiwen Fan,'* Daniel Rosenfeld,” Yuwei Zhang,"” Scott E. Giangrande,* Zhanging Li,**
Luiz A. T. Machado,® Scot T. Martin,” Yan Yang,"® Jian Wang,* Paulo Artaxo,’
Henrique M. J. Barbosa,*'° Ramon C. Braga,® Jennifer M. Comstock,’ Zhe Feng,'
Wenhua Gao,""! Helber B. Gomes,'? Fan Mei,' Christopher Pohlker,"* Mira L. Pohlker,"*
Ulrich Poschl,**'* Rodrigo A. F. de Souza'®

CCN,, + UAP_

Fig. 1 lllustration of the effect of ultrafine aerosol particles (UAP<so) on tropical convective
clouds. In clouds that lack UAP.so (left), the clouds are highly supersaturated as a result of fast drop
coalescence that forms warm rain and reduces the integrated droplet surface area available for
condensation. With added UAP.so (right, red dots), an additional number of cloud droplets are
nucleated above cloud base, which lowers supersaturation drastically by enhanced condensation,

SClenC e 20 1 8 releasing additional latent heat at low and middle levels, thus intensifying convection. The additional

3 condensate adds to both the warm rain and supercooled cloud water; when freezing occurs aloft,

this addition further enhances convection (i.e., a small increase in convection but enhancement of
precipitation and storm electrification).
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Do Ultrafine Cloud Condensation Nuclei Invigorate Deep Convection?
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Convective invigoration by aerosols

Comments on “Do ultrafine cloud condensation nuclei invigorate deep convection?”

Jiwen Fan! and Alexander Khain?

Convective invigoration: fact or fiction?

Reply to Fan and Khain comments on Grabowski and Morrison 2020 paper
“Do ultrafine cloud condensation nuclei invigorate deep convection?”

Wojciech W. Grabowski and Hugh Morrison

exchange in JAS...



Invigoration: increase of updraft strength
due to cloud microphysics.

One needs to distinguish between “more
convection” versus “stronger convection”.
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FiG. 7. Time mean of cloud properties at 6.75 km of altitude, plot-
ted as a function of the cooling rate, R, and logarithmic curve fits.
{(a) Upward cloud mass flux M and convective mass flux M.. (b) Mean
upward velocity w and mean convective velocity w. in the clouds.
(c) Areal coverage of cloudy updrafts o and of convective updrafts
o, (units are in percentages of the total area).
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One may argue that documenting aerosol effects of deep
convections should be relatively simple 1n observations. In fact,
there are several studies that attempted that (examples to follow).

However, there are two key problems:

- Correlations between aerosol and convection do not imply
causality: aerosols and meteorology can co-vary.

- Atmospheric observations may not be accurate enough to
eliminate meteorological factors, see Grabowski (JAS 2018).



Observations: correlation does not imply causality!

Couple examples of erroneous interpretation of observations:

L1 et al. (Nature Geo 2011) show correlation between clouds
and aerosols over ARM SGP site; they say in the abstract:

“...precipitation frequency and rain rate are altered by aerosols”™
Varble (JAS 2018) shows that aerosols and meteorology co-vary at SGP!

Storer et al. (JGR 2014) show correlation between aerosol and tropical
convection over Atlantic; they say in the abstract:

“These observations suggest that convective invigoration occurs
with increased aerosol loading, leading to deeper, stronger storms in
polluted environments™



Lightning enhancement over major oceanic
.. GRL 2017
shipping lanes

Joel A. Thornton' |, Katrina S. Virts> |, Robert H. Holzworth® |, and Todd P. Mitchell*
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Figure 1. (a) Observed annual-mean WWLLN lightning density for 2005-2016 in the eastern Indian Ocean and the South China Sea. (b) PM, 5 shipping emissions
estimates from EDGAR database for 2010, both at 0.1° resolution. See text and Sl for more details.



Lightning enhancement over major oceanic
shipping lanes

, Katrina S. Virts?> |, Robert H. Holzworth®> |, and Todd P. Mitchell*
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Figure 1. (a) Observed annual-mean WWLLN lightning density for 2005-2016 in the eastern Indian Ocean and the South China Sea. (b) PM, 5 shipping emissions
estimates from EDGAR database for 2010, both at 0.1° resolution. See text and Sl for more details.

“We conclude that aerosol particles resulting from ship exhaust enhance CCN, which
invigorate convection and ice processes above the shipping lanes, leading to
enhanced lightning. ...”



Locally Enhanced Aerosols Over a Shipping Lane Produce

Convective Invigoration but Weak Overall Indirect GRL 2018
Effects in Cloud-Resolving Simulations
Peter N. Blossey'" "', Christopher S. Bretherton2'', Joel A. Thornton'""', and Katrina S. Virts?
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Additional analysis of the simulations dataset (P. Blossey,
personal communication; not included in the GRL paper):

mean vertical velocity
(shipping line, environment)
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Additional analysis of the simulations dataset (P. Blossey,
personal communication; not included in the GRL paper):

mean vertical velocity In-core mean vertical velocity
(shipping line, environment) (shipping line, environment)
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“more convection”, no “stronger convection”...
Grabowski and Morrison JAS 2020



Locally Enhanced Aerosols Over a Shipping Lane Produce
Convective Invigoration but Weak Overall Indirect GRL 2018
Effects in Cloud-Resolving Simulations

Peter N. Blossey'' "', Christopher S. Bretherton2'', Joel A. Thornton'""', and Katrina S. Virts?
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See also Morrison and Grabowski (ACP 2011)
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Fig. 1. COSMO-DE model domain, with insertions of coverage of
the German radar composite (grey), and the three evaluation sub-

domains with the model orography.

2008, 2009, 2010 summers

(JJA) convection-permitting
(~3 km grid length) 48-hour
hindcasts using COSMO-DE

Table 3. Experiments performed for this study. The data can be ac-
cessed from DWD using the database IDs given here for individual

experiments and years.

No.

ID 1in database

2008

2009

2010

microphysics

e = LV T SN VS S T

7544
7545
7547
7907
7546
8056
7483

7451
7452
7454
7906
7453
8055
7450

7895
7899
7954
7955
8013
8026
7897




a) Experiment 1: high CCN, low IN
M| .

b) Experiment 2: low CCN, low IN
, , | , , \ ,
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Fig. 5. Monthly mean precipitation amount of JJA 2008-2010 for experiments 14 combined from 06:00-18:00 h hindcasts initialized at
00:00 and 12:00 UTC.



A rather msignificant
impact of aerosols

(CCN and IN) on mean
rain accumulation!
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Fig. 9. Box-whisker plot of relative change of 12-h accumulated
area-averaged precipitation of JJA 2008-2010. Shown are anoma-
lies relative to the mean of Exps. 1-6. The precipitation data has
been averaged over either one of the three subdomams. The bottom
and top of the boxes are the lower and upper quartiles, the line near
the middle of the boxes is the median, whiskers are the 5th and 95th
percentiles and the stars represent the mean value.



Separation of physical impacts from different flow realizations:
three 24-hr simulations with CCN of 100, 1000, and 3000 per cc

Aerosol-Cloud Interaction in Deep Convective Clouds over the Indian Peninsula
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Separation of physical impacts from different flow realizations:
three 24-hr simulations with CCN of 100, 1000, and 3000 per cc

Aerosol-Cloud Interaction in Deep Convective Clouds over the Indian Peninsula
Using Spectral (Bin) Microphysics?
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FI1G. 11. (top) Time evolution of vertical profiles of simulated maximum updraft in the selected study region for CCN concentrations of
(a) 100, (b) 1000, and (c) 3000 cm > where updrafts are greater than 1 m s~ . (bottom) PDFs (%) over the whole domain at (d) 5°, (¢) —10°,
and (f) —20°C during 1500-1800 LST are also shown.



Separation of physical impacts from different flow realizations:
three 24-hr simulations with CCN of 100, 1000, and 3000 per cc

Aerosol-Cloud Interaction in Deep Convective Clouds over the Indian Peninsula Gayatri et al.
Using Spectral (Bin) Microphysics? QS 2017
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FI1G. 11. (top) Time evolution of vertical profiles of simulated maximum updraft in the selected study region for CCN concentrations of
(a) 100, (b) 1000, and (c) 3000 cm > where updrafts are greater than 1 m s~ . (bottom) PDFs (%) over the whole domain at (d) 5°, (¢) —10°,
and (f) —20°C during 1500-1800 LST are also shown.



height

Is that really possible?

Liquid condensate freezing: the impact of latent
freezing releases . . o
clean polluted more latent heating approximately balances loading effect:
heating and
Y cor::j:fi(;rr?t\?vilen @d = @ (1 + &q,, — qc)
! 6. 6 compared to
® 4 (" ."°‘ clean...
o6 e dg — change of cloud water mixing ratio
0 degC level 5@d~ 5@ + @ éq
© o ‘%068 00 ~ L/cp 6q ~3-10°0q  Ly~3-10°J/kg
o o 0" 6%

5&@ é O og~ 3 -10° dq

Grabowski and Morrison JAS 2020

If the mechanism works, 1t should be seen even
in simulations with simple warm-rain microphysics...



Q. J. R. Meteorol. Soc. (2006), 132, pp. 317-344
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Daytime convective development over land: A model intercomparison

based on LBA observations

By W. W. GRABOWSKI'*, P. BECHTOLD?, A. CHENG?, R. FORBES*, C. HALLIWELL?,

M. KHAIROUTDINOV?, S. LANG®, T. NASUNO, J. PETCH®, W.-K. TAO®, R. WONGS3,
X. WU? and K.-M. XU3
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Cloud-resolving simulations of LBA shallow to deep convection
transition with 1-moment bulk (Grabowski AR 1999) and 2-moment
bulk (Morrison and Grabowski JAS 2008, 2009) miCTOphysicCs:

- 50 x 50 x 24 km? domain;
- 400 m horizontal gridlength;

- stretched grid 1n the vertical: 81 levels, ~50 m near the surface,
~300 m in the middle troposphere, ~600 m near the upper
boundary;

- run for 12 hours, 3D fields saved every 6 min, time-averaged
surface rain rate saved every 3 min.

Grabowski (JAS 2015), Grabowski and Morrison (JAS 2016, 2020)



I-moment warm-rain and 1ce scheme (IAB):
Grabowski (AR 1999) applied in Grabowski (2015)

saturation adjustment; prescribed droplet concentrations (100 vs
1000 per cc; affects drizzle/rain formation; ice properties only
weakly linked to droplet concentration; PRI vs POL

2-moment bulk warm-rain and ice scheme (2ZMOM):
Morrison and Grabowski (JAS 2008, 2009) applied in Grabowski and Morrison (2016, 2020)

supersaturation predicted; droplet concentration predicted from
assumed CCN (pristine PRIS vs additional CCN ADCN) and
local conditions; 3-variable ice scheme (concentration + 2 mixing
ratios) directly linked to droplet concentrations



updraft statistics at 3km (10 degC) and 7 km (-12 degC) for w > 1m/s, q > 1 g/kg

median and mean
lines: 10*-90t percentile;
boxes: mean = st. dev.
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updraft (m/s) ® o updraft (m/s)
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updraft statistics at 3km (10 degC) and 7 km (-12 degC) for w > 1m/s, q > 1 g/kg
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updraft statistics at 3km (10 degC) and 7 km (-12 degC) for w > 1m/s, q > 1 g/kg
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updraft statistics at 3km (10 degC) and 7 km (-12 degC) for w > 1m/s, q > 1 g/kg
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microphysics parameterization does matter!



Supersaturation statistics for all updraft points; hours 6 and 7 (strongest convection)
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Supersaturation statistics for all updraft points; hours 6 and 7 (strongest convection)
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Comparing @, with finite supersaturation with @, at $=0, @,
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Comparing @, with finite supersaturation with ®,at $=0, @,
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Summary:

PRI versus POL simulations in Grabowski and Morrison
(JAS 2016) and PRIS vs ADCN in Grabowski and Morrison

(JAS 2020) with 2-moment bulk scheme:

- small modification of the cloud dynamics in the warm-rain
zone due to differences in the supersaturation field;

- no invigoration above the freezing level;

- significant microphysical impact on convective anvils:
higher droplet concentrations leading to higher ice
concentrations, small ice terminal velocities and longer
anvil life times.



In summary, I strongly believe that the convection
invigoration is a myth, at least in the way it is presented in
papers by Danny Rosenfeld and his colleagues
(e.g., Rosenfeld et al. Science 2008, Fan et al. Science 2018).



