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Global baroclinic instability: semi-implicit vs. explicit integrations of all-scale equations;
(Smolarkiewicz, Kuehnlein & Wedi, JCP 2014).

CPI2, 2880 dt=300 s,
wallclock time=2.0 mns

8 days, surface 0,
128x64x48 lon-lat grid,
128 PE of Power7 IBM

CPEX, 432000 dt=2 s,
wallclock time=178.9 mns

This huge computational-efficiency gain comes at the cost of increased mathematical/numerical
complexity, reliant on the solution of an arduous elliptic boundary value problem (BVP)



Semi-implicit integrators (MHD example)

op*W

= V- (V') =

U = {u, O, BT
R = {RU7 Re'a RB}T

U = A (B, V7, p*) + 0.56tR} = W + 0.56tR]

r WM = W, + 0.50t LU +0.56t N(¥)["~" — 0.5t GV
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=> elliptic problems for potentials ®
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Elliptic problems for generalized atmospheric equations

soundproof:

GV (Gpv) =0 > gipv. (gp(“, _ éTcmp)) —=0; withv=GTa=GTW + u,)

compressible: D/Dt (gas law) & — ) ( V-GV -G CV@)) — B (p—p)=0

{=1

=2 [L(p)—R=0




EULAG’s “exact-projection” nonsymmetric solver

The approach: left-preconditioned, restarted Generalized Conjugate Residual, “GCR(k)” of
Eisenstat et al. SIAM J. Num. Anal. 20 (1983) --- interpreted as an extension of the Richardson
iteration (Phil. Trans. Roy. Soc., London A210 (1910)); see also sec. 4.9 Physical Analogies in
Birkhoff & Lynch, Numerical Solution of Elliptic Problems, SIAM (1984).

IPlo) 1 0Ply) . 1 0P(¢) 5
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The actual algorithm: In each node i of the grid, for any initial guess ¢, set ¥ = L;(©°) — Ry,
g 1 1
¢ = P;(rY), then iterate:

For n = 1,2, ...until convergence Do ; for v =0,...k —1do;

_ <TV£(qV)> . E/+1 — Y v, Z/+1 — NPAN
= L)L) 777 TP = L)

exit if ||t |[<e; |6 = Pi_l(r”“)]; Vi evaluate Lj(e) ;

(L(e)L(q))
(L(g)L(d))

¢ =G+ ag s Lild™) = Lie) + Y aulild') ;
=0

1=0 =
end for ; reset [o, v, q, L(¢)]} to [¢, , ¢, L(¢)]) ; End For .

1 1

Vieop Q= —

Why preconditioning? € problem stiffness; condition numbers & convergence rates;
accuracy over a broad range of scales; reduced complexity (Skamarock et al., MWR, 1997)
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A simple realization of € = P, (r"*1) is the Richardson iteration (RI) €' =€ + y (P(e*) —r’*1), , with
fixed pseudo-time stepy; P ~ L is realized by neglecting off-diagonal entries of £ =» polynomial

preconditioner of limited value. However, Rl can be generalized to semi-implicit time stepping as

well as Fourier or multigrid representation. Here we consider the former:

ei”““ =el' +y (P e™) + PV (el - '), VIHEX; EULAG’s historical standard

(Dl = (DeM); + y*(P"(e") — D(e* ™! — k) + PV (et — 1), From diagonally preconditioned

e = et [ noo + (1 — ) €M Dufort-Frankel to weighted line Jacoby;
hereafter “reference”

el =l P (PXEHTI) £ PV (M) — M), Peaceman & Rachford 2D ADI
EiM+1 _ EiM+1/2 + P (PH(EMH2) £ Y (et — 1), Ph = PY(eh) — vl
& =+ 7 [P TP 1 PY () + PV (M) - r"]i : Douglas 3D ADI
Giu«+2/3 _ Giu + 9 :73"({6“, Eu+1/3}) +PY ({e¥, €M+2/3}) +PV(et) — rv]i ,
Giu«+3/3 _ Eiu + 9 _PX({EM, €M+1/3}) +PY ({e", €M+2/3}) +PY([eH, €M+3/3}) _ ru]i

—1 %

Ultimately, all of them rely on the tridiagonal inversion € = (Z —y*P*); '*; comments on

collocated grids, bcs, and parallelization (Povitsky, J. Parallel Distrib. Comput., 59, 1999).



Results: baroclinic instability; domain horizontally global x 23km in
radius; 360x180x48 grid, 16 days simulated time with dt = 100 s
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Surface potential temperature, comparison with earlier
results on 128x64 grid after 8 days, contour interval 4 K

2022 Slide 8



Lo~ —~ L L - L L - e e L e e e e e . e e - e

125.00 /5

‘{“H

Weighted line-Jacoby reference preconditioner, 16-day simulation, on
the entire horizontal domain [0,360]x[-90,90] deg, contour interval 8 K
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As above, but for the vertically-implicit Richardson preconditioner.
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As in the preceding slide, but for xz & xyz ADI preconditioners;
cf. the reference preconditioner.
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Table 1
Performance of selected preconditioners.

No. Preconditioner Equations Processors Iterations WCT [min]
0 none P=1 24 x15x 1 89/40 56
1 Richardson impl. in z (18) 24 x 15 x 1 28/14 43
2 Jacobi impl. in xyz (19)-(21) 24 x 15 x 1 9/8 22
3 Jacobi impl. in xyz (19)-(21) 6x15x4 9/8 19
4 ADI impl. in xz (23) 6x15x4 14/8 20
5 ADI impl. in xyz (25) 6x15x4 15/8 30
~3b  Jacobiimplinxyz =~ (19)-(21) = 12x30x4  9/8 s
4b ADI impl. in xz (23) 12 x30x 4 15/8 9
3¢ Jacobiimplinxyz ~ (19)-(21) = 12x30x4  12)9 54
4c ADI impl. in xz (23) 12 x30x 4 8/4 40

0-5 the same 360-180 resolution and the same 360 PE.
3b-4b the same 360-180 resolution but 4xPE of 3-4.
3c-4¢ 720-360 resolution, dt=50s, and 4PE as in 3b-4b.



CONTOUR FROM 239.9 TO 312.8 BY 10.4 CONTOUR FROM R37. TO 313. BY 10.

90. 90.

0. 0.

—-90. -90.
0 90. 180. 270. 25.81 M/S 360. 0. 90, 180. 270. o64.49 M/s 360.

As in bottom panel of the preceding figure (ADI xyz), but along the
surface orography, dt= 50 s; left the initial condition, right 16-day result.

Table 2
Supplement of Table 1; orographic forcing.

No. Preconditioner Equations Processors Iterations WCT [min]
0t none P=I 6x15x4 81/62 75
1t Richardson impl. in z (18) 6x15x4 19/15 65
3t Jacobi impl. in xyz (19)-21) 6x15x4 8/6 35
4t ADI impl. in xz (23) 6x15x4 14/5 30
5t ADI impl. in xyz (25) 6x15x4 14/5 64




Results: tornadic storm splitting; 334x167x20 km?3. 720x360x48 grid, 2h simulated
time with dt=3 s (Smolarkiewicz, Kuehnlein, Grabowski, JCP 2017)

Reference ILES with line Jacoby preconditioner: vertical velocity w with contour interval 2 m/s (left), isolines of rainwater
mixing ratio with contour interval 1 g/kg. The results are displayed after 2h simulation time at the elevation z = 5km.

Performance of selected preconditioners.

No. Preconditioner Equations Processors Iterations WCT [min]
0 none P=7 24 x 15 x 1 4/3 14
1 Richardson impl. in z (18) 24 x15x 1 3/3 16
2 Jacobi impl. in xyz (19)-(21) 24 x15x 1 3/3 17
3 ADI impl. in xz (23) 24 x 15 x 1 3/3 18
4 ADI impl. in xyz (25) 24 x15x 1 3/3 22

Remark: The same grid (re DOF) as in the baroclinic-instability runs 3c and 4c of Table 1, but the solver performs much better. =
The significance of the problem conditioning in the spectral sense. For the baroclinic instability the ratio of the longest to the shortest
wavelength supported on the grid is ~ 4 - 10* (= 4 - 10* km/1 km), while the same ratio for the tornadic storm is = 4 - 102 . These
heuristic estimates can be formally refined, but they already hint large discrepancies in the algebraic condition numbers k and solver
performances for the physics at hand.



Results: weak toroidal magnetic field between flapping membranes, anelastic MHD
equations; domain L,xLyxHy= [-2.5,2.5]°x[0,4], zso= 1.6 and Ly=L,=z; 152x152x120
grid, T=17.28, dt=0.036 (after Smolarkiewicz & Charbonneau, JCP 2013)
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Reference MHD simulation, Bo=0.5e-2; B, component and the velocity vectors shown in
the central xz plane at t=0, 0.25 T, 0.75 T from the top to bottom, with respective contour
intervals 0.1012 e-3, 0.1310 e-3 and 0.0893 e-3; the maximal arrow lengths correspond to
0.58, 0.00, and 0.01 velocities.
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Table 4
o5 L Performance of selected preconditioners for weak field simulations.
No. Preconditioner Equations Iterations u Iterations B WCT [min]
y 0 none P=1 59/3 3/3 6
SOl 1 Richardson impl. in z (18) 22/3 3/3 5
2 Jacobi impl. in xyz (19)-(21) 25/3 3/3 5
3 ADI impl. in xz (23) 29/3 3/3 6
T 4 ADI impl. in xyz (25) 24/3 3/3 8
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Conclusions:

GCR(k) solver with a suite of the Richardson preconditioners maintains computational efficacy for all scale
problems and becomes a universal tool for a broad range of complex tasks. This universality owes to the
increased accuracy in large scales (see ! below). Our approach differs from the pursuit of a sole “super-
preconditioner” with capabilities of a universal solver (e.g., spectral or multigrid).

Organizing classical stationary solvers under the idea of Richardson iteration is theoretically justified and
practically advantageous for programming. The difficulty in developing the suite, is not in coding its members, but
in mastering the parallel tridiagonal inversions with Neumann and periodic boundaries.

Our preconditioners include free parameters: the pseudo-time step, and the number of iterations. The pseudo-
time step is determined by the convergence of preconditioner iterations, while the number of iterations is reduced
to a necessary minimum. Here, both ADI algorithms used a single pass through the matrix inversion, whereas
other schemes used two complete iterations. The task distribution was fixed in each group of intercomparisons. In
practice, the preconditioners’ setups are optimized for the case at hand.

GCR(k) is tunable via the exit condition. The physics-based criteria are used in practice: e.g., 103 and 10° for the
allowed shortest time scales of the residual errors compared the time scales of physical compressibility and
physical displacements, respectively, in compressible and soundproof applications.

! In entries 3t-5t of Table 2, relaxing tenfold the exit criteria had no impact on the results, but considerably
reduced the respective wall-clock times. The same relaxation in 1t and 2t entries lead to the solution blowup after
9 days, showing the solution’s reliance on the stringency of the stopping criterion diminishing with increasing
implicitness of the preconditioners. This reflects the efficacy of the more advanced schemes in preconditioning a

broader range of spectral scales. It also illuminates the dependency of the preconditioners’ efficacy on the case at
hand and attests to the utility of the entire suite.



