A. Possner

A. Possner

A. Possner

Stratocumulus clouds = flat cloud sheets that shade Earth

A. Possner

pure liquid stratocumulus (Wood et al. 2012):

occurs above all ocean basins, but predominantly in the subtropics; reflect between 27-38% of solar radiation

A. Possner

pure liquid stratocumulus (Wood et al. 2012): occurs above all ocean basins, but predominantly in the subtropics; reflect between 27-38% of solar radiation

<u>mixed-phase stratocumuli (Morrison et al. 2012)</u>: contain liquid and ice, are thermodynamically unstable, but persist for days

A. Possner

phase classification based on active remote sensing (2006-2010)

Outline of talk

> Origins of cloud ice

Cloud radiative effects

Cloud regime changes

primary nucleation governed by <u>immersion freezing</u> (Murray et al. 2012)

Measurements in the field

Ni = ice crystal number concentration

Just uncertainty?

Vergara-Temprado et al. (2018)

→ large uncertainty between INP measurements (Hiranuma et al. 2015)

Just uncertainty? - No

→ increasing empirical and observed evidence for SIP in mixed-phase stratocumuli

(Rangno & Hobbs 2001, Luke et al. 2021, Pasquier et al. 2022)

Ni = ice crystal number concentration

Secondary ice production (SIP)

Secondary ice production (SIP)

GCM = global climate model

Secondary ice production (SIP)

 SIP through ice phase can close gap between observed N_i and INP in relatively warm (T_{ct} > -5°C) Arctic MPCs (*Sotiropoulou et al. 2020a*).

Secondary ice production (SIP)

- SIP through ice phase can close gap between observed N_i and INP in relatively warm (T_{ct} > -5°C) Arctic MPCs (Sotiropoulou et al. 2020a).
- Process less efficient at cold temperatures (T_{ct} < -10°C) and implementation dependent on rimed fraction (*RF*) and crystal shape assumptions (*Sotiropoulou et al. 2020b, Zhao et al. 2021*).

Secondary ice production (SIP)

- SIP through ice phase can close gap between observed N_i and INP in relatively warm (T_{ct} > -5°C) Arctic MPCs (Sotiropoulou et al. 2020a).
- Process less efficient at cold temperatures (T_{ct} < -10°C) and implementation dependent on rimed fraction (*RF*) and crystal shape assumptions (*Sotiropoulou et al. 2020b, Zhao et al. 2021*).
- Warm cloud bases are needed to generate sufficiently large raindrops for efficient fragmentation through droplet freezing *(Sullivan et al. 2018).*

SECONDARY PRODUCTION

Idealised M-PACE simulations

200x200 grid points, 24h (one diurnal cycle)

- $\Delta x, \Delta t, \Delta z$: 125m, 1s, 25m
- fixed large-scale forcing & advection (Klein et al. 2009)
- 2M bulk microphysics parameterisation (Seifert & Beheng, 2006)
- + Break up (Phillips et al. 2017)
 - + Droplet shattering (Phillips et al. 2018)

Parameterisation collisional breakup

$$(C, \gamma = F(RF, S))$$
 \longrightarrow $N = F'(RF, S)$

Collisional breakup does not produce stable mixed-phase cloud with correct ice-phase properties

Simulations with droplet shattering (+ potential amplification by breakup) match ice & liquid-phase observations

SIP once triggered is self-sustaining over at least 14 hours

Summary: Origins of cloud ice

- immersion freezing is dominant primary nucleation mechanism
- building evidence of SIP, BUT:
 - mechanistic understanding incomplete
 - insufficiently constrained by observations
 - model implementations strongly dependent on assumptions

-> regions of enhanced research activity: Arctic, Atlantic cold air outbreaks, Southern Ocean

Outline of talk

- > Origins of cloud ice
- Cloud radiative effects

Cloud regime changes

difference in net surface radiation ~ SW_{\downarrow} + LW_{\downarrow} + LW_{\uparrow}

 $(SW \rightarrow 0 Wm^{-2} at sfc)$

(convention: +*ve* downward)

shut off of rain suppresses ice-phase and WBF depletion of LWP

(convention: +*ve* downward)

deeper cloud increases warming

LW compensates SW and net radiative impact is moderate

at lower latitudes SW radiative effect dominates!

LW compensates SW and net radiative impact is moderate

Southern Ocean radiative bias in ICON

 \rightarrow radiative bias in SO 8 Wm⁻²

→ underestimation of supercooled low-level cloud water

Cloud phase feedback and climate sensitivity

- Supercooled liquid and SW, overestimated in previos generation of climate models (Bodas-Salcedo et al. 2014)
- cloud-phase feedback overestimated in CMIP5 models (Tan et al. 2016)

Cloud phase feedback and climate sensitivity

Summary: Cloud radiative effect

- in the Arctic low-level mixed-phase clouds warm the surface (annual mean), everywhere else they cool
- accurate supercooled liquid cloud amount representation in climate models is key for estimates of regional and global low-cloud feedback
- uncertainties in process understanding limit confidence in extrapolation of cloud feedback in extratropics

-> regions of enhanced research activity: Arctic, Atlantic cold air outbreaks, Southern Ocean

Outline of talk

> Origins of cloud ice

Cloud radiative effects

Cloud regime changes

\rightarrow cloud pattern influences albedo (McCoy et al. 2017)

MODIS Aqua Imagery

 \rightarrow cloud pattern influences albedo (*McCoy et al. 2017*)

→ pattern changes can be associated with degree of cloud ice formation (*Eirund et al. 2019, Tornow et al. 2021*)

Summary: Cloud regimes

- Clouds organise, which constrains their mesoscale variability
- Little is known about potential connections between phase variability and mesoscale organisation
- Going hypothesis of "preconditioning" (Tornow et al. 2021) remains to be verified

The team at GUF looking at cloud physics

Home The Team Projects Research CV Publications

Group Members from left to right: top row: Kevin Pfannkuch, Christopher Reichel, Luise Schulte, Veeramanikandan Ramadoss. bottom row: Lianet Hernandez Pardo, Jessica Danker, Anna Possner Contact details for all staff members are listed <u>here</u>.

www.anna-possner.com

The team at GUF looking at cloud physics

Home The Team Projects Research CV Publications

Group Members from left to right: top row: Kevin Pfannkuch, Christopher Reichel, Luise Schulte, Veeramanikandan Ramadoss. bottom row: Lianet Hernandez Pardo, Jessica Danker, Anna Possner Contact details for all staff members are listed <u>here</u>.

2 positions to be filled summer this year

www.anna-possner.com