University of Warsaw Lagrangian Cloud Model (UWLCM): recent developments and future plans

Piotr Dziekan ZFA seminar 08.11.2024

- UWLCM description
- Developments:
 - Anisotropic turbulence model and its application to Sc modeling
 - Fractal reconstruction of unresolved scales
- Plans

University of Warsaw Lagrangian Cloud Model

Model overview

- Numerical model of clouds developed at IGF with a focus on detailed modeling of microphysics
- Large eddy simulation (LES) approach
- Resolution from centimeters to hundreds of meters
- Soundproof (anelastic) equations
- Super-droplet (and bulk) microphysics
- MPDATA advection algorithm
- SGS turbulence: Smagorinsky or ILES

Lagrangian particles (aerosols, droplets) in an Eulerian grid (thermodynamic fields)

Numerics

- Written in C++
- Simultaneous use of CPUs and GPUs
- OpenMP + MPI parallelization
- HDF5 output, ready for Paraview visualization and Xarray analysis
- Singularity container with dependencies makes it easy to run
- Most simulations are done on clusters at AGH Cyfronet
- Open source (github.com/igfuw/UWLCM)
- Automated tests

Available modeling cases

- Marine stratocumulus (Dycoms RF01 and RF02)
- Marine cumulus (BOMEX, RICO)
- Cumulus congestus
- Thermal
- Dry PBL
- Cloud chamber

Anisotropic SGS turbulence model and low clouds in climate models

Motivation – stratocumulus clouds in storm-resolving models (SRMs)

- Climate models are evolving towards storm-resolving resolutions of the order of 1km (NextGEMS project).
- It is a "grey-zone" resolution, where neither parameterisations from LES nor from global models work properly.
- Stratocumuli (Sc) are important for global albedo.
- In SRMs, Sc:
 - are susceptible to turbulence parameterisations (Nowak et al. 2024),
 - have wrong morphology (Fons et al. 2024),
 - drizzle too much (Fons et al. 2024).

Sc morphology

https://earthobservatory.nasa.gov/images/87456/open-and-closed-cellsover-the-pacific

Sc morphology – models vs satellites

- Real Sc are aggregated in closely connected cells
- Clouds in Sc regions in ICON are made of less connected cells (sparse, larger variability in cloud depth)

Can models get Sc morphology right?

Strategy to use LES to improve Sc representation in SRMs

- Use UWLCM to model Sc in idealized conditions at resolutions typical for SRMs
- Test different SGS turbulence models: isotropic Smagorinsky vs anisotropic Smagorinsky (several types)
- Vary horizontal resolution (to see how scale-aware SGS turbulence models are)
- Caveats:
 - LWP is highly sensitive to resolution
 - Anisotropic cells help better represent Sc (Pedersen et al. 2018) → vertical reslution also needs to be changed

Sc morphology vs resolution: $\Delta x=5km \Delta z=50m$

 Cell
 Cell

 Cell
 Cell

 Cell
 Cell

 X
 25 km

Sc morphology vs resolution: $\Delta x=2km \Delta z=20m$

Cell Cell Cell Cell

Sc morphology vs resolution: $\Delta x=1 \text{ km } \Delta z=20 \text{ m}$

Cell Cell Cell Cell

Sc morphology vs resolution: $\Delta x=100m \Delta z=10m$

Sc morphology vs resolution: $\Delta x=50m \Delta z=5m$

Smagorinsky model

isotropic $D_t \vec{v} = \dots + \nabla \cdot (K E)$ $K \propto l |E|$

- K eddy viscosity
- **E** deformation tensor
- I length scale, e.g.: $l=C(\Delta x \Delta y \Delta z)^{(1/3)}$

- Typically $\Delta z < \Delta x = \Delta y$
- $K_h \propto l_h |\mathbf{E}| = K_v \propto l_v |\mathbf{E}|$?
- $K_h \propto l_v |\mathbf{E}| = K_v \propto l_h |\mathbf{E}|$?
- Which K for which component of **E**?
- E_h, E_v?

Sc morphology vs turbulence model: $\Delta x=5km \Delta z=50m$

isotropic

Sc morphology vs turbulence model: $\Delta x = 2 \text{ km} \Delta z = 20 \text{ m}$

isotropic

Sc morphology vs turbulence model: $\Delta x=1 \text{km} \Delta z=20 \text{m}$

isotropic

Sc morphology vs turbulence model: $\Delta x=100m \Delta z=10m$

isotropic

Sc morphology vs turbulence model: $\Delta x=50m \Delta z=5m$

dw

t = 2.43e + 0425000 -100 20000 -80 15000 -60 \geq 10000 - 40 5000 20 0 5000 10000 20000 25000 15000 0 х

isotropic

LWP histogram: $\Delta x=5$ km $\Delta z=50$ m

LWP histogram: $\Delta x = 2 \text{ km } \Delta z = 20 \text{ m}$

LWP histogram: $\Delta x = 1 \text{ km } \Delta z = 20 \text{ m}$

LWP histogram: $\Delta x = 100 \text{ m} \Delta z = 10 \text{ m}$

LWP histogram: $\Delta x=50m \Delta z=5m$

LWP histogram: satellites

Turbulence model and precipitation

Tentative conclusions

- Replacing isotropic Smagorinsky with anisotropic at greyzone resolutions gives:
 - more uniform Sc cloud field (more realistic?)
 - less drizzle (helps with positive bias)
 - higher LWP
 - comes at no computational cost.

Ice microphysics

- Agnieszka Makulska is working on:
 - Implementing ice in bulk microphysics
 - Developing ice in superdroplet microphysics
 - Stochastic nucleation
 - SGS fluctuations
 - ...
- Study:
 - stability of mixed-phase clouds
 - deep convection

HANAMI project

- Developing European HPC applications through collaboration with Japanese partners
- Funded by EuroHPC
- Collaboration with Shin-ichiro Shima (Univ. of Hyogo, Kobe)
- UWLCM:
 - Adaption to more architectures (Fugaku, Lumi)
 - Improved memory access pattern for superdroplets on CPUs
 - Neural networks for ice in super-droplet microphysics

