Wavelet-based Analysis: Intermittency, Coherency, Pulses:

by Jun-Ichi Yano Météo France Toulouse

Background:

- **Standard Turbulence Theories**
- (cf., Kolmogorov):
- Homogeneity, Isotropy
- (i.e., totally disorganized)
- **Observed Turbulence:**
- Inhomogeneous, Nonisotropic:
- Intermittency, Coherency, Pulses

Intermittency, Coherency: Isolated Structures in Time and Space :

Pulses

How to Characterize

- the Intermittency, Coherency, Pulses?:
- i.e.,
- Isolated Structures in Time and Space?:

Wavelet

Wavelet(Discrete Orthogonal:Meyer) Two indices: i, j: localizations:

i=-1: domain average

Orthogonal&Complete

 $\frac{\text{Fourier Expansion}(\text{Discrete Complete Set})}{\text{for a finite periodic domain, } [0, L]:}$

$$\frac{1}{L} \int_0^L \phi_k(x) \phi_l(x) = \delta_{kl}$$

For any well-behaved function, f(x):

$$f(x) = \sum_{k=0}^{\infty} \hat{f}_k \phi_k(x)$$
$$\hat{f}_k = \frac{1}{L} \int_0^L f(x) \phi_k(x) dx$$

wavlet method

$$\frac{1}{L} \int_0^L \phi_{i,j}(x) \phi_{i',j'}(x) = \delta_{ii'} \delta_{jj'}$$

For any well-behaved function, f(x):

$$f(x) = \sum_{i=-1}^{i_{max}} \sum_{j=1}^{\max(1,2^i)} \hat{f}_{i,j} \phi_{i,j}(x)$$
$$\hat{f}_{i,j} = \frac{1}{L} \int_0^L f(x) \phi_{i,j}(x) dx$$

Wavelet(Discrete Orthogonal:Meyer)

Wavelet-based Decomposition:

$$\varphi(x) = \sum_{i=-1}^{\ln_2 N-1} \sum_{j=1}^{j_{max}} \tilde{\varphi}_{i,j} \psi_{i,j}(x)$$

$$\varphi(x,y) = \sum_{i_x=-1}^{\ln_2 N_x - 1} \sum_{i_y=-1}^{\ln_2 N_y - 1} \sum_{j_x=1}^{j_{x,max}} \sum_{j_y=1}^{j_{y,max}} \tilde{\varphi}_{i_x,i_y,j_x,j_y} \psi_{i_x,j_x}(x) \psi_{i_y,j_y}(y)$$

Demonstrations:

Efficiency of Representing Intermittency, Coherency, and Pulses by Wavelet:

Compression

Decomposition

Extraction

Compression:

Let
$$l = l(i, j)$$
 with $l = 0, \dots, N - 1$:
$$\hat{f}_l^c = \begin{cases} \hat{f}_l, & |\hat{f}_l| > \alpha f_c \\ 0, & |\hat{f}_l| \le \alpha f_c \end{cases}$$

where

$$f_c = (\sum_{l=1}^{N-1} \hat{f}_l^2)^{1/2}$$

Compressed Representation:

$$f^c(x) = \sum_{l=0}^{N-1} \hat{f}_k^c \phi_k(x)$$

Decomposition:

Choose a Threshold Variable: φ .

High Component:

$$\hat{\mathbf{f}}_{l}^{H} = \begin{cases} \hat{\mathbf{f}}_{l}, & |\hat{\varphi}_{l}| > \varphi_{c} \\ 0, & |\hat{\varphi}_{l}| \le \varphi_{c} \end{cases}$$

Low Component:

$$\hat{\mathbf{f}}_{l}^{L} = \begin{cases} 0, & |\hat{\varphi}_{l}| > \varphi_{c} \\ \hat{\mathbf{f}}_{l}, & |\hat{\varphi}_{l}| \le \varphi_{c} \end{cases}$$

Here,

$$\varphi_c = (\sum_{l=1}^{N-1} \hat{\varphi}_l^2)^{1/2}$$

Decomposition:

Decomposition:

Convective and Mesoscale Components:

Threshold Variable:

$$\phi = d |v_H| / dz$$

ES **CRM Simulation:** GATE: **Squall-Line** total NW**System** (b)400 x 400 km² ES convectione NW(c)S E14mesoscale NW

CRM Simulation: GATE: Nonsquall-Line System 400 x 400 km²

CRM Simulation: GATE: Scattered Convection 400 x 400 km²

Extraction:

One-Dimensional Demonstration: Zonal Wind over Western Pacific:

-20

Extraction of Isolated Features:

Two-Dimensional Generalization: Conceptually Straightforward:

(b)

768

256

0

Extraction of Isolated Features:

1st Extracted Modes:

Extraction of Isolated Features:

1st Extracted Modes:

hours

hours

hours

Fourier-Type Analysis:

Wavenumer-Spectrum Power:

Further Perspectives:

- Applications to the Standard Fourier-Based Method for the Intermittency Analyses:
- **Just Replace Fourier by Wavelet**
- Advantage: No Windowing Issue Any More

Wavelet:

•Capacity of Quantifying the Intermittency effectively:

- Orthogonality and Completeness
 Automatic Windowing
 Many Options with Flexibility
- **Q: What We Want to Quantify?**
- **Further Possibility:**
- **Careful Process Study in Wavelet Space**

Don't Use Continuous Wavelet

Thanks to Contributions of:

- W. Grabowski, X, Wu, M. Moncrieff,
- K. Fraedrich, R. Bender, C. Zhang,
- P. Bechtold, J.-L. Redelberger,
- F. Guichard, B. Jakubiak

The Meyer Code is provided by: Michio Yamada

Exmaple of Process Study in Wavelet Space:

Energy-Conversion Cycle (Yano et al. 2005, QJ):

