Climatology of low-level clouds in km-scale climate models

Jakub L. Nowak¹, Ian C. D. V. Dragaud², Junhong Lee³, Piotr Dziekan¹, Juan Pedro Mellado², Bjorn Stevens³

¹Institute of Geophysics, Faculty of Physics, University of Warsaw, Poland ²Meteorologisches Institut, Universität Hamburg, Hamburg, Germany ³Max Planck Institute for Meteorology, Hamburg, Germany

Atmospheric Physics Seminar, 29 Nov 2024

Standard coarse-resolution models have many deficiencies

Traditional CMIP6 models with~100 km grids

- represent many processes statistically relying on empirical parameterizations
 - vertical transport of energy and water due to atmospheric convection
 - o uptake of heat and carbon by the deep ocean due to mesoscale eddies
 - effect of heterogeneous land surface, bathymetry and coastal/ice shelves
 - o atmospheric waves
 - o extremes of precipitation and temperature
- suffer from well-known biases
 - tropical precipitation: too early, too little over continents, double ITCZ
 - SST: too warm in the upwelling regions, too cold in tropical Atlantic and Pacific, too cold in subpolar North Atlantic
 - \circ $\;$ low-level clouds: too few, too bright

Despite consumed resources, there are advantages of km-scale modeling

Two subtropical low cloud regimes differ in thermodynamic structure of the BL

 θ_l - liquid water potential temperature, q_t - total water mass fraction

q_t

Next Generation Earth Modeling Systems

nextgems-h2020.eu

- 1. develop two storm-resolving Earth system models and demonstrate their capacity to realistically represent the coupled (land-ocean-atmosphere) climate system
- 2. perform the first global multi-decadal (30 y) km-scale climate projections
- use the models to test long-standing hypotheses underpinning the understanding of climate change, e.g. convective organization, cloud-aerosol interactions, mesoscale circulations, selection of circulation regimes, role of landscape for regional climate
- 4. build new and more integrated user communities

NextGEMS develops two km-scale global coupled climate models

Model	IFS-FESOM Integrated Forecasting System Finite-volumE Sea ice-Ocean Model	ICON ICOsahedral Non-hydrostatic model		
Institutions	ECMWF, AWI	DWD, MPI, DKRZ, KIT, C2SM		
Model configuration	Cycle 48r1 (Rackow et al. 2024)	Saphirre (Hohenegger et al. 2023)		
Governing equations	primitive hydrostatic	compressible Navier-Stokes		
Horizontal grid	Gaussian octahedral	icosahedral-triangular C		
Vertical grid	pressure-based, 137 levels	geopotential-based, 90 levels		
Microphysics	1-moment bulk vapor, liquid, ice, rain, snow	1-moment bulk vapor, liquid, ice, rain, snow, graupel		
Cloud fraction	parameterized	binary + global cloud inhomogeneity		
Convection	shallow, mid, deep	none		
Turbulent mixing	EDMF, K-diffusion	Smagorinsky-Lilly		

See also: easy.gems.dkrz.de

Subgrid turbulence in ICON: Smagorinsky-Lilly

Subgrid turbulence in IFS: eddy-diffusivity mass-flux and K-diffusion

IFS Documentation Cy48r1, Koehler et al. 2011

Subgrid turbulence in IFS: stratocumulus-topped BL

IFS Documentation Cy48r1, Koehler et al. 2011

NextGEMS released 4 cycles of simulations

NextGEMS simulations: resolution, length and forcing

	$\Delta x_{\rm A}$ (km)	$\Delta x_{\rm O}$ (km)	Period	Nodes	Throughput (SDPD)	Forcing	Energetically consistent
Cycle 1							
ICON-C1	5	5	406 days	100*	17	Perpetual 2020	No
IFS_F-C1	4.4	25	40 days	20*	40	Perpetual 2020	No
Cycle 2 (Wieners et al., 2023)							
ICON-C2-A	5	5	2 years	400	80	Perpetual 2020	No
ICON-C2-B	10	10	10 years	400	550	Perpetual 2020	No
IFS_F-C2-A	2.8	5	8 months	864*	50	Perpetual 2020	No
IFS_F-C2-B	4.4	5	1 year	864*	100	Perpetual 2020	No
Cycle 3 (Koldunov et al., 2023)							
ICON-C3	5	5	5 years	530	98	Perpetual 2020	No
IFS_F-C3	4.4	5	5 years	269	100	Perpetual 2020	Yes
Cycle 4 (Wieners et al., 2024)							
ICON-C4	10	5	30 years	464	414	SSP3-7.0	Yes
IFS_F-C4	9	5	30 years	269	600	SSP3-7.0	Yes

Segura et al., in preparation

Focus on representative geographical regions

CERES EBAF TOA monthly means data in netcdf edition 4.2. NASA Langley Atmospheric Science Data Center. Years 2000-2022.

solid squares – our 4x4 deg regions of interest, dashed squares – 10x10 deg StCu regions of Klein & Hartman 1993

dots - selected field campaigns (DYCOMS, EUREC4A, ASTEX, ACE-2, ACE-ENA, VOCALS-REx, ORACLES)

The models simulate correct general pattern of albedo

180°

120°W

60°W

0°

Annual cycle is reasonable in StCu regions; fair in most TrCu regions

Relation between TOA albedo and 12 parameters

- sea surface temperature (SST)
- surface wind speed
- surface sensible heat flux (SHF)
- surface latent heat flux (LHF)
- lifting condensation level (LCL)
- inversion height
- inversion strength
- liquid water path (LWP)
- lower tropospheric stability (LTS)
- vertical velocity, potential temperature and specific humidity at 700 hPa (w@700hPa, θ@700hPa, q@700hPa)

$$LTS = \theta_{700hPa} - \theta_{surface}$$

For StCu, albedo correlates with stability

black lines – linear trends from ERA5 + CERES in 2010-2021 for StCu

above the panels - correlation coefficients: blue for StCu and red for TrCu

For TrCu, albedo correlates with dry & wet seasons

black lines – linear trends from ERA5 + CERES in 2010-2021 for TrCu

above the panels - correlation coefficients: blue for StCu and red for TrCu

The models differ in cloud water; and cloud base height of StCu

Months of maximum albedo

- Canarian: July
- Californian, Peruvian, Namibian: August

Months of minimum albedo

- Hawaiian, Barbadian: February
- Brazilian: March
- Galapagoan: November

Both models miss trade-wind inversion for TrCu

during 1st half of the EUREC4A campaign (Jan 21 – Feb 4, 2020)

Summary: low clouds in km-scale models are fair on monthly timescale

- 5-year simulations with two km-scale global coupled climate models
- 8 regions of interests over subtropical Atlantic and Pacific

- + average and annual cycle of albedo
- + relation between albedo and tropospheric stability
- + thermodynamic vertical structure
- radiation-entrainment feedback
- cloudiness in coastal areas

Stcu

- + BL properties distinct from StCu
- + dry&wet seasons in annual cycles and parameter correlations
- overestimated average albedo
- trade-wind inversion
- too dry cloud layer in ICON