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Standard coarse-resolution models have many deficiencies 
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Traditional CMIP6 models with  ̴100 km grids 
• represent many processes statistically relying on empirical parameterizations 

o vertical transport of energy and water due to atmospheric convection 

o uptake of heat and carbon by the deep ocean due to mesoscale eddies 

o effect of heterogeneous land surface, bathymetry and coastal/ice shelves 

o atmospheric waves 

o extremes of precipitation and temperature 

• suffer from well-known biases 

o tropical precipitation: too early, 
too little over continents, double ITCZ 

o SST: too warm in the upwelling regions, 
too cold in tropical Atlantic and Pacific, 
too cold in subpolar North Atlantic 

o low-level clouds: too few, too bright 



Despite consumed resources, there are advantages of km-scale modeling 

3 ICON-Saphirre 5 km 



Two subtropical low cloud regimes differ in thermodynamic structure of the BL 
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𝜽𝒍   𝜽𝒍 

StCu: stratocumulus TrCu: trade-wind cumulus 

𝜃𝑙- liquid water potential temperature, 𝑞𝑡 - total water mass fraction 



Next Generation Earth Modeling Systems                                       nextgems-h2020.eu 
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1. develop two storm-resolving Earth system models and 
demonstrate their capacity to realistically represent the 
coupled (land-ocean-atmosphere) climate system 

2. perform the first global multi-decadal (30 y) km-scale 
climate projections 

3. use the models to test long-standing hypotheses 
underpinning the understanding of climate change, e.g. 
convective organization, cloud-aerosol interactions, 
mesoscale circulations, selection of circulation regimes, 
role of landscape for regional climate 

4. build new and more integrated user communities 



NextGEMS develops two km-scale global coupled climate models 
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Model 
IFS-FESOM 

Integrated Forecasting System 
Finite-volumE Sea ice-Ocean Model 

ICON 
ICOsahedral Non-hydrostatic model 

Institutions ECMWF, AWI DWD, MPI, DKRZ, KIT, C2SM 

Model configuration Cycle 48r1 (Rackow et al. 2024) Saphirre (Hohenegger et al. 2023) 

Governing equations primitive hydrostatic compressible Navier-Stokes 

Horizontal grid Gaussian octahedral icosahedral-triangular C 

Vertical grid pressure-based, 137 levels geopotential-based, 90 levels 

Microphysics 
1-moment bulk 

vapor, liquid, ice, rain, snow 
1-moment bulk 

vapor, liquid, ice, rain, snow, graupel 

Cloud fraction parameterized 
binary 

+ global cloud inhomogeneity 

Convection shallow, mid, deep none 

Turbulent mixing EDMF, K-diffusion Smagorinsky-Lilly 

See also: easy.gems.dkrz.de 



Subgrid turbulence in ICON: Smagorinsky-Lilly 
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𝑤′𝜙′ = −𝐾
𝜕𝜙 

𝜕𝑧
 

𝐾 ∼ 𝑈0𝑙 

𝑙 = 𝐶𝑠Δ       0 < Cs < 1  

𝐾 = 𝐶𝑠Δ
2 2𝑆𝑖𝑗𝑆𝑖𝑗𝑓 𝑅𝑖  

𝑓 𝑅𝑖 =  
1 − 𝑅𝑖 𝑃𝑟    if  1 − 𝑅𝑖 𝑃𝑟 ≥ 0

           0             if  1 − 𝑅𝑖 𝑃𝑟 < 0
 

𝑈0 ∼ Δ𝑈 ∼ 𝑙
𝜕𝑈

𝜕𝑧
         𝐾 ∼ 𝑙2

𝜕𝑈

𝜕𝑧
 

1D 

3D 

Fluid Mechanics 101 (youtube) 



Subgrid turbulence in IFS: eddy-diffusivity mass-flux and K-diffusion 
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𝑤′𝜙′ = −𝐾𝑏𝑜𝑡

𝜕𝜙 

𝜕𝑧
+ 𝑀 𝜙 𝑢 − 𝜙  

𝐾 ∼ 𝑙2
𝜕𝑈

𝜕𝑧
𝑓(𝑅𝑖) 

𝐾𝑏𝑜𝑡 𝑧 ∼ 𝑢∗𝑧𝑓(𝑧 𝐿 , 𝑧 𝑧𝑖 ) 

𝑤′𝜃𝑣
′  

𝑧𝑖

= −0.2 𝑤′𝜃𝑣
′  

0
= −𝐾𝑒𝑛𝑡

𝜕𝜃𝑣

𝜕𝑧
 

𝑤′𝜙′ = −𝐾
𝜕𝜙 

𝜕𝑧
 

𝑀: surface-driven plume model 

Eddy-diffusivity mass-flux 

IFS Documentation Cy48r1, Koehler et al. 2011 
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Subgrid turbulence in IFS: stratocumulus-topped BL 
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𝑤′𝜃𝑣
′  

𝑧𝑖

= −0.2 𝑤′𝜃𝑣
′  

0
− 0.2

Δ𝑅

𝜌𝑐𝑝
= −𝐾𝑒𝑛𝑡

𝜕𝜃𝑣

𝜕𝑧
 

𝑤′𝜙′ = − 𝐾𝑏𝑜𝑡 + 𝐾𝑡𝑜𝑝

𝜕𝜙 

𝜕𝑧
+ 𝑀 𝜙 𝑢 − 𝜙  

IFS Documentation Cy48r1, Koehler et al. 2011 

𝐾𝑡𝑜𝑝 𝑧 ∼ Δ𝑅𝑧𝑖

1
3𝑓(𝑧 𝑧𝑖 ) 



NextGEMS released 4 cycles of simulations 
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Segura et al., in preparation 



NextGEMS simulations: resolution, length and forcing 
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Segura et al., in preparation 



Focus on representative geographical regions 
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CERES EBAF TOA monthly means data in netcdf edition 4.2. NASA Langley Atmospheric Science Data Center. Years 2000-2022. 

solid squares – our 4x4 deg regions of interest, dashed squares – 10x10 deg StCu regions of Klein & Hartman 1993 

dots – selected field campaigns (DYCOMS, EUREC4A, ASTEX, ACE-2, ACE-ENA, VOCALS-REx, ORACLES) 

Top of the atmosphere albedo 



The models simulate correct general pattern of albedo 

13 



Annual cycle is reasonable in StCu regions; fair in most TrCu regions 
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What factors control the cloudiness? 
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Relation between TOA albedo and 12 parameters 
• sea surface temperature (SST) 
• surface wind speed 
• surface sensible heat flux (SHF) 
• surface latent heat flux (LHF) 
• lifting condensation level (LCL) 
• inversion height 
• inversion strength 
• liquid water path (LWP) 
• lower tropospheric stability (LTS) 
• vertical velocity, potential temperature and specific humidity at 700 hPa 

(w@700hPa, θ@700hPa, q@700hPa) 

𝐿𝑇𝑆 = 𝜃700ℎ𝑃𝑎  − 𝜃𝑠𝑢𝑟𝑓𝑎𝑐𝑒  



For StCu, albedo correlates with stability 
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black lines – linear trends from ERA5 + CERES in 2010-2021 for StCu  

above the panels – correlation coefficients: blue for StCu and red for TrCu 



For TrCu, albedo correlates with dry & wet seasons 
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black lines – linear trends from ERA5 + CERES in 2010-2021 for TrCu 

above the panels – correlation coefficients: blue for StCu and red for TrCu 



The models differ in cloud water; and cloud base height of StCu 
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Months of maximum albedo 

• Canarian: July 

• Californian, Peruvian, Namibian: August 

Months of minimum albedo 

• Hawaiian, Barbadian: February 

• Brazilian: March 

• Galapagoan: November 



Both models miss trade-wind inversion for TrCu 
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Model (yellow) and radiosonde (black; Stephan et al. 2021) profiles at the Barbados Cloud Observatory 
 during 1st half of the EUREC4A campaign (Jan 21 – Feb 4, 2020) 



Summary: low clouds in km-scale models are fair on monthly timescale 
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• 5-year simulations with two km-scale global coupled climate models 

• 8 regions of interests over subtropical Atlantic and Pacific 

+ average and annual cycle of albedo 

+ relation between albedo and tropospheric stability 

+ thermodynamic vertical structure  

- radiation-entrainment feedback 

- cloudiness in coastal areas  

+ BL properties distinct from StCu 

+ dry&wet seasons in annual cycles        
   and parameter correlations 

- overestimated average albedo 

- trade-wind inversion 

- too dry cloud layer in ICON 
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