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Overview

Collision-coalescence of inertial particles in turbulent flows

Motivation of study:
To compute kinematics and collision statistics of water droplets typical of atmospheric clouds

Focus of study:
To investigate the effect of lubrication forces on the dynamics of aerodynamically interacting 

droplets

• Turbulent flows and particle transport are very common phenomena in nature. The processes occur

continuously, with different intensity and at different scales.

• Particle transport by a turbulent fluid phase is also an important mechanism for many technological

processes (combustion of pulverized coal in boilers, pneumatic transport in pipelines, combustion of

the fuel in engines or spraying of fertilizers and plant protection products)

• In this study, the general focus is on modeling of cloud microphysical processes.

“Warm rain processes account for about 31% of the total rain fall and 72% of the 

total rain area in tropics. This process is active in most climate zones in all seasons.”



Problem definition

Motion of particles in homogeneous isotropic turbulence

Turbulent background flow U(x, t)

Particle motion Y(k) (t), V(k) (t)

Contours of vorticity

(Color: magnitude)

Motion of particles

(Cone: velocity magnitude 

and direction)
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Problem definition

Simulation of the homogeneous isotropic turbulence (HIT)

• Governing equations

• Discretization (Eulerian)
3D Cartesian mesh of N equally spaced 

grid points in each spatial direction

• Basic assumptions
3D incompressible homogeneous

isotropic turbulent flow with periodic

boundary conditions (also for droplets)

on a cube of size 2π

• Solution Method
Pseudo-spectral method for direct numerical simulation (DNS)

The momentum equation is solved (integrated) in the spectral space 

using discrete Fourier transform as
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Problem definition

Algorithm for simulating the HIT

Solution

Assuming we have the solution in the following form ( ) ( ) ( ) ( )( )To computeˆ ˆ ˆ ˆ, ; , 2 ; ... ; , n , n 1dt dt dt dt⎯⎯⎯⎯⎯→ +U k U k U k U k

Step 1. Apply FFT-1 to obtain velocity in physical space

Algorithm

( ) ( )
-1

FFTˆ , ,t t⎯⎯⎯→U k U x

Step 2. Obtain vorticity in spectral space and then apply

FFT-1 to obtain vorticity in physical space
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Step 3. Calculate N1(x, t) ≡ U × ω (the first nonlinear

term RHS of N–S) in physical space and FFT 

to spectral space

( ) ( ) ( )FFT ˆ, n ,n ,ndt dt dt ⎯⎯⎯→ 1U x ω x N k

Step 4. Evolve the velocity in time

Note: N2(x, t) ≡∇(P/ρ + U2/2)
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Problem definition

Evolution of the dispersed phase and aerodynamic interactions
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For k-th particle: V(k) (t) is the particle velocity,

τp
(k) is its Stokes inertial response time, and 

U(Y(k) (t), t) is the undisturbed fluid velocity, 

U(x, t), at the location of the particle: Y(k) (t)

• Governing equations (typical): 

where u(k) is the disturbance velocity felt at the location of k-th particle, 

and U(k) = U(Y(k) (t), t).

• Aerodynamic interactions (AIs):

Two droplets sedimenting under gravity 

in still air

g ↓

The motion of each droplet is generating a 

perturbation field that induces a disturbance 

velocity at the location of the other droplet

( )( ) ( ) ( )( )

( )

( )
( )

( )d ( )

d

d ( )
( )

d

k k kk

k

p

k
k

tt

t

t
t

t



− +
= − +

=

V U uV
g

Y
V

• Equations of motion considering AIs: 

+ AIs

Limitation: using this set of equations, the effect of 

interaction among particles would be overlooked

(PR: Wang, 2017)



Aerodynamic interactions

How to determine?

x1

x2

x3

a1

a2

V2

V1

Y1(x1, x2, x3)

Y2(x1, x2, x3)

Perturbation field for: Mathematical description Position vectors*

A single droplet r = x – Y

Two droplets using

(original) superposition method

r1 = x – Y1

r2 = x – Y2

Two droplets using

improved superposition method 

(ISM)
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Mathematical description of disturbance fields induced by particles using the solution to Stokes equation

* The position relative to the center of the particle/droplet

x1

x2

x3

Y (x1, x2, x3)

V

x

r

Y

arbitrary:

x (x1, x2, x3)

A single dropletTwo droplets

n droplets2 droplets N-body ISM?



Aerodynamic interactions

Extension of ISM to an arbitrary number of droplets (Np) and hybrid DNS (HDNS)

Number of droplets Disturbance velocity (perturbation felt at the location of droplet) Flow

2

Still air

Np

Np Turbulent flow field
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Using ISM to compute disturbance velocities

* r(k, m) = Y(k) – Y(m)

** For an arbitrary droplet k, all the other droplets are indexed m

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )

( ) ( )

, , ,

St St

, , , ,

,

,

,

; ,
k m k m k m m m

k m k m k m m k m m

k m m

i j j

k m m

a

v







=   +

=



u u r v

r r v v

α v

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

3

2
, ,

, ,

3

,

, ,

3 3

4 4

3 1

4 4

m m

k m k m

k m k m

m m

k m

k m k m

a a
r

r r

a a

r r


  
  −   

  

  
 +   

  

Now we define: then:

In the last equation let’s move the unknowns, u(m), to the LHS:
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such that α(k, m) is a 3×3 symmetric matrix 

with components:
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Superposed Stokes disturbance velocities of Np – 1 droplets, u(k), felt at the location of an arbitrary droplet k can be described as:

It was shown:

That is:
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and each row consists of 3 equations along 3 spatial directions. Thus, this set of 3Np equations in a compact notation can be described as:
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Eqs. of motion

DNS

N-body ISM (?)

→ HDNS

Aerodynamic interactions

HDNS

Parallel GMRes solver



Aerodynamic interactions

Inaccurate force representation of ISM

Normalized magnitude of the drag force acting on two same-size spherical particles, whether approaching or receding, 

along their line of centers as a function of nondimensional gap between their surfaces.

Wang et al. (2005):

“While our improved formulations

still perform better than the

original formulation, all the

formulations based on the

superposition method fail to

predict the lubrication effect.”

Focus of our study
Lubrication effect:

s – 2 → 0 then F → ∞ (singular)

so strong dependency to Δt is 

expected
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Aerodynamic interactions

Computing AIs from the analytical solutions of Jeffrey & Onishi (1984) 

Ignore rotational motion

• No rotation considered in ISM (HDNS)

• Considering rotational motion JO solutions is very time-consuming



Aerodynamic interactions

Computing AIs from the analytical solutions of Jeffrey & Onishi (1984) 



Aerodynamic interactions

Coupled implementation of HDNS and analytical solutions of JO84

50a

3a

The interaction regions (spheres) around each droplet:

• red: particle of consideration;

• blue: particles with r < 3a to the particle of consideration;

• black: particles with distances 3a < r < 50a;

• grey: distant particles r > 50a.

For each particle 

look for an 

interacting nearby 

particle: r < 50a

Compute distance
Compute constants 

for N-body ISM and 

fill the matrices

Finished checking 

all particles?
Compute forces

Compute X (s, λ) & 

Y (s, λ) for defined 

values of s

Interpolate X (s, λ) & 

Y (s, λ) based on the 

distance s

Solve the set of 

equations of N-Body 

ISM

Yes No

Add short- and long-

range interaction 

field to the equations 

of motion:

u = uHDNS + ulub

r > 3a

Compute factors 

Pnpq , Vnpq , Qnpq

JO84HDNS Common

Compute functions 

fk (λ)

r < 3a



Collision statistics

RDF, RRV, kinematic and dynamic collision kernels: gr(r/R), ⟨|wr(r/R)|⟩, Г K and Г D
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→ Measure of clustering

gr = 1: uniform distribution

gr > 1: clustering

Radial distribution function (RDF):

Radial relative velocity (RRV):

Kinematic collision kernel:

Dynamic collision kernel:

→ Volumetric rate of collision

Collision sphere radius:

1. Introduce the particles

2. Evolve the system for 10Te (statistically stationary)

3. Start collecting samples from the following:

→ Rate of collision



Results

Sensitivity of droplet collision statistics to time step size

Two-point collision statistics at contact computed using different time steps:

(a) normalized radial relative velocity and (b) radial distribution function.

saturate

lubrication better 

represented

(prevents collision)

low-inertia droplets (more critical)



Results

Sensitivity of droplet collision statistics to time step size

RRV computed using different time step sizes for the normalized separation distance in the range:

(a) 1 < r / R < 10 and (b) 1 < r / R < 1.5 with the set of droplets ap = 40 µm and Np = 50 000. 

The black rectangle in (a) marks the region that is enlarged and shown in (b).

AI Not much change

No changes at longer separation distances



Results

Sensitivity of droplet collision statistics to time step size

RDF computed using different time step sizes for the normalized separation distance in the range:

(a) 1 < r / R < 10 and (b) 1 < r / R < 2 with the set of droplets ap = 40 µm and Np = 50 000. 

The black rectangle in (a) marks the region that is enlarged and shown in (b).

AI + relocation
Not much change

Overall conclusion: compromise between 

accuracy and simulation time because

Δt↓ then evolution time↓ hence uncertainty↑
No changes at longer separation distances



Results

Sensitivity of droplet collision statistics to time step size

The effect of time step size on the dynamic collision kernel for

(a) the same number of droplets: Np = 50 000 and (b) the same mass loading: φ = 1.22×10−2, considering various sets of 

same-size droplets with different radii.

Almost no change in CK

RRV↓ + RDF↑



Results

Setting an optimal location for the matching point δ

Variations in the radial relative velocity for the sets of droplets

(a) ap = 40 µm; Np = 50 000, and (b) ap = 30 µm; Np = 118 500 when the lubrication forces are considered within different 

ranges of interaction δ.

(δ = 3)

50a

3a

HDNS handles 

many-body 

interaction

JO solutions capture 

lubrication effects



Results

Setting an optimal location for the matching point δ

Variations in the radial relative velocity for the sets of droplets

(a) ap = 40 µm; Np = 50 000, and (b) ap = 30 µm; Np = 118 500 when the lubrication forces are considered within different 

ranges of interaction δ.

lubrication effect lubrication effect

losing many-body 

interaction effects
losing many-body 

interaction effects



Results

Setting an optimal location for the matching point δ

Variations in the radial distribution function for the sets of droplets

(c) ap = 40 µm; Np = 50 000, and (d) ap = 30 µm; Np = 118 500 when the lubrication forces are considered within different 

ranges of interaction δ.

lubrication effect
lubrication effect

losing many-body 

interaction effects

losing many-body 

interaction effects



Results

Setting an optimal location for the matching point δ

Variations in the (a) at-contact radial relative velocity and (b) at-contact radial distribution function for three sets of droplets 

with the same mass loading, φ = 1.22×10−2, when the lubrication forces are considered within different ranges of 

interaction.

HDNS HDNS

losing the accuracy and 

efficiency of many-

body interactions



Results

Setting an optimal location for the matching point δ

Variations in the dynamic collision kernel for three sets of droplets with the same mass loading, φ = 1.22×10−2, when the 

lubrication forces are considered within different ranges of interaction.

HDNS

less change in DCK



Results

Effects of AIs on kinematic and dynamic collision statistics

The effect of turbulent energy dissipation rate on the at-contact RRV for different (a) droplet sizes and (b) Stokes numbers. 

In panel (b) the theoretical model of Saffman & Turner (1956) is shown.

The DNS results of Rosa et al. (2013, figures 8a and 13a there) are additionally included in panels (b).

lubrication effect (though not 

influencing collision statistics)



Results

Effects of AIs on kinematic and dynamic collision statistics

The effect of turbulent energy dissipation rate on the at-contact RDF for different (c) droplet sizes and (d) Stokes numbers. 

The DNS results of Rosa et al. (2013, figures 8a and 13a there) are additionally included in panels (d).

for low inertial droplets not 

many pairs at contact (high 

RRV is not important)

AI + relocation



Results

Effects of AIs on kinematic and dynamic collision statistics

The dynamic collision kernel as function of (a) droplet size in flows with different energy dissipation rates for Np = 50 000, 

and (b) the normalized dynamic collision kernel for corresponding values of the Stokes number.

The results of Rosa et al. (2013) are added to panel (b) for comparison.

higher inertia 

(curves)

higher inertia

higher inertia 

(each curve)
mainly RDF



Results

Comparison of the new lubrication-included HDNS with standard HDNS and simulations without AIs

Changes in the at-contact (a) RRVs and (b) RDFs when the effect of lubrication forces is taken into consideration compared 

with the standard HDNS without lubrication effects as well as the case without aerodynamic interaction for Np = 50 000 

droplets in a flow at a low dissipation rate ε = 50 cm2/s3.

lubrication effect (though not 

influencing collision statistics)

lubrication effect

lubrication effect



Results

Comparison of the new lubrication-included HDNS with standard HDNS and simulations without AIs

Comparison of at-contact RRV in case when there is aerodynamic interaction, both including and excluding lubrication 

forces, and when there is no aerodynamic interaction, all with and without gravity, for (a) the same number of droplets,

Np = 50 000 and (b) the same mass loading, φ = 1.22×10−2 at the dissipation rate ε = 400 cm2/s3.

results for 

higher inertia + gravity 

both more pronounced!

lubrication 

effect

lubrication effect



Results

Comparison of the new lubrication-included HDNS with standard HDNS and simulations without AIs

Comparison of at-contact RDF in case when there is aerodynamic interaction, both including and excluding lubrication 

forces, and when there is no aerodynamic interaction, all with and without gravity, for (a) the same number of droplets,

Np = 50 000 and (b) the same mass loading, φ = 1.22×10−2 at the dissipation rate ε = 400 cm2/s3.

The empirical model of Ayala, Rosa & Wang (2008, (84) and (85) for Rλ = 76.86) is also included for comparison.

results for 

higher inertia + gravity

lubrication 

effect lubrication effect

clustering



Results

Comparison of the new lubrication-included HDNS with standard HDNS and simulations without AIs

Comparison of the dynamic collision kernel when there is aerodynamic interaction, both including and excluding 

lubrication forces, and when there is no aerodynamic interaction, all with and without gravity, for (a) the same number of 

droplets, Np = 50 000 and for (c) the same mass loading, φ = 1.22×10−2 at the dissipation rate ε = 400 cm2/s3.

Not much 

change (g)

slight reduction

slight reduction (g)

slight reduction

HDNS + Flub vs HDNS (slight decrease)



Results

Corrections to kinematic formulations due to non-overlapping droplets condition

a2

a1

Collision sphere

R = a1 + a2 

≡ Cw≡ Cg



Results

Corrections to kinematic formulations due to non-overlapping droplets condition
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Results

Validation of corrected kinematic formulations

Comparisons between the collision kernel obtained from the dynamic formulation with that computed using the kinematic 

formulation, both before (UC) and after (C) applying corrections,

when (a) gravity is not considered and (b) when there is gravity.

matched after 

correction 

matched after 

correction 

Γ K = Γ D

Overlapping droplets:

no relocation after collision

Non-overlapping droplets:

relocation after collision

Overlapping (no relocation)



Results

Effect of particles number density and mass loading

Changes in the at-contact (a) RRV, (b) at-contact RDF and (c) the dynamic collision kernel

for the sets of droplets with different radii and numbers, i.e. different mass loadings.

Kinematics and dynamics are more sensitive to φ

with gravity and inertia (decorrelation)



Conclusions

• Due to the non-linearity of lubrication forces, at-contact kinematics strongly depend on the chosen time step size,

while for larger separation distances there is not much change in kinematics by various choices.

• For moderate-to-large inertia droplets, considering lubrication decreases RRV and increases RDF, whereas for

small inertia droplets the RRV increases which does not affect collision statistics due to very low clustering.

• By additionally considering lubrication effects, there is a slight decrease in the rates of collision.

• The effect of lubrication forces is more pronounced in systems with larger energy dissipation rates, especially if

gravitational settling is considered.

• The corrections (due to relocation) applied to kinematics of droplet statistics can accurately recover values

corresponding to dynamic formulation.

• When the mass loading grows, the kinematic collision statistics reveal an opposite trend, namely the RRV increases

with the droplet number density, while the RDF monotonically decreases.



Thank you


