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• Background on Cloud Processes

• Superdroplet Method for collision coalescence

• Defining the Deficit Problem/Adaptive Timestepping

• Adaptivity in a Box model

• Adaptivity in 2d prescribed flow



We need accurate and efficient 

representation of  cloud 

microphysical properties and 

dynamics

Clouds are important and hard to model accurately!

• Weather Forecasting

• Radiation Budget and Climate

Understanding small scale processes leads to 

accurate parameterizations of  larger ones!!!!

Xue L, Fan J, Lebo ZJ, et al. (2017)
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≈>2 𝜇𝑚
drizzle droplet 

>50 𝜇𝑚

rain droplet 

>100 𝜇𝑚

Aerosol particle

≈≤2 𝜇𝑚

Condensation Collision-Coalescence



• Diffusional Growth

• Fick’s Law

• Colliding droplets 
coagulate to form 
larger droplets

+
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It would take a 2 𝜇𝑚 activated cloud 

droplet 24 hours to grow into 100𝜇𝑚 

raindrop in average conditions through 

condensation alone

cloud droplet 

≈>2 𝜇𝑚
drizzle droplet 

>50 𝜇𝑚

rain droplet 

>100 𝜇𝑚

Aerosol particle

≈≤2 𝜇𝑚

Condensation Collision-Coalescence



Smoluchowski Coagulation Equation

(Smoluchowski, 1916)

𝐾 𝑅𝑖, 𝑅𝑗 : 𝐾𝑒𝑟𝑛𝑒𝑙 𝑗, 𝑘 , describes the likelihood of  these interactions happening

Change in # particles of 

size X
Smaller particles colliding 

to become size X
=

GAIN

-
Particles leaving size X due 

to collisions with other 

particles

LOSS



Smoluchowski Coagulation Equation

• Clouds

• Aerosol 

• Shrimp Populations

• Fuel in pistons

• Bubbles

• Oil Spills

• Planetary Formation from dust

Change in # particles of 

size X
Smaller particles colliding 

to become size X
=

GAIN

-
Particles leaving size X due 

to collisions with other 

particles

LOSS

(Smoluchowski, 1916)



Particle-Based Methods (Superdroplets)

• Lagrangian tracers

• One computational superdroplet represents 
many computational droplets

• These particles can have attributes such as 
radius, isotopic composition, chemical 
composition, hygroscopicity, position

• Retain histories

• Well suited for Monte-Carlo coagulation 
algorithms



Morrison H, Chandrakar KK, Shima S, Dziekan P, Grabowski WW. (2024)

𝑡10 = time for 10% of  system cloud water 

mass to reach “raindrop” size (>40um)

Number of  computational Particles

Still huge variability just in coagulation algorithms!!

• 3D LES Cumulus Congestus Cloud

• Using piggybacking technique to 

separate microphysical behavior

• This shows variations on the Super 

Droplet Method (SDM, Shima et al., 

2009) and Average Impact Method 

(AIM, Riechelmann et al. 2012)

• Everything here is a particle-based 

representation



• Background on Cloud Processes

• Superdroplet Method for collision coalescence

• Defining the Deficit Problem/Adaptive Timestepping

• Adaptivity in a Box model

• Adaptivity in 2d prescribed flow



Super Droplet Method (Shima et al. 2009)

• When initialized efficiently, it is shown to outperform other algorithms in 
terms of  convergence to analytic solutions (Unterstrasser et al, 2017)

• Monte-Carlo algorithm

• Tests pairs of  superdroplets for collision events

• SDM Stochasticity resolves lucky rain formation (Morrison et al., 2024)
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𝑝𝑝𝑎𝑖𝑟𝑗,𝑘 =
𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝

𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒
∙ 𝜉𝑗 ∙

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑖𝑟𝑠

𝑝𝑎𝑖𝑟𝑠 𝑡𝑒𝑠𝑡𝑒𝑑
∙ 𝐾𝑒𝑟𝑛𝑒𝑙(𝑗, 𝑘), 𝑐ℎ𝑜𝑜𝑠𝑖𝑛𝑔 𝜉𝑗 > 𝜉𝑘



• Choosing j and k so that 𝜉𝑗 > 𝜉𝑘

• Superdroplet k collects 𝜉𝑘 droplet from donator superdroplet j

• Superdroplet k grows in mass, superdroplet j decreases multiplicity

Mass and number of  superdroplets are conserved



𝛾 = integer number of  events   

       predicted by probability   

       and Monte-Carlo success

• Choosing j and k so that 𝜉𝑗 > 𝜉𝑘

• Superdroplet k collects 𝜉𝑘 droplet from donator superdroplet j

• Superdroplet k grows in mass, superdroplet j decreases multiplicity

Mass and number of  superdroplets are conserved



• Faster than bin methods in high dimensional attribute space

• Scales efficiently with number of  attributes and particles

• Embarrassingly Parallel

• No numerical diffusion (retains particle identity)

• Conserves mass and Ns

𝛾 = integer number of  events   

       predicted by probability   

       and Monte-Carlo success
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• Defining the Deficit Problem/Adaptive Timestepping

• Adaptivity in a Box model

• Adaptivity in 2d prescribed flow



• Shima et al., 2009 limit 𝛾 by 
𝜉𝑘

𝜉𝑗

• Pointed out in Dziekan and Pawlowska (2017)

• Quantified in Bartman, P., & Arabas, S. (2023). 

𝜸 >
𝝃𝒋

𝝃𝒌
!!

𝛾𝑜𝑐𝑐𝑢𝑟𝑒𝑑 =
𝜉𝑗

𝜉𝑘

   𝛾𝑜𝑐𝑐𝑢𝑟𝑒𝑑< 𝛾𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
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𝑑𝑒𝑓𝑖𝑐𝑖𝑡 = 𝛾𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝛾𝑜𝑐𝑐𝑢𝑟𝑒𝑑 ∙ 𝜉𝑘



Adaptive Time-Stepping Algorithm

𝑑𝑒𝑓𝑖𝑐𝑖𝑡 = 𝛾𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝛾𝑜𝑐𝑐𝑢𝑟𝑒𝑑 ∙ 𝜉𝑘 𝑝𝑝𝑎𝑖𝑟𝑗,𝑘 =
𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝

𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒
∙ 𝜉𝑗 ∙

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑖𝑟𝑠

𝑝𝑎𝑖𝑟𝑠 𝑡𝑒𝑠𝑡𝑒𝑑
∙ 𝐾𝑒𝑟𝑛𝑒𝑙(𝑗, 𝑘),

𝑝𝑝𝑎𝑖𝑟𝑗,𝑘 = ෤𝑝𝑝𝑎𝑖𝑟Δ𝑡

We want to avoid 𝛾𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 >
𝜉𝑗

𝜉𝑘
:

Δ𝑡_𝑚𝑎𝑥𝑝𝑎𝑖𝑟 = 
𝜉𝑗

𝜉𝑘
/ ෤𝑝𝑝𝑎𝑖𝑟 

Δ𝑡𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 = min({Δ𝑡_𝑚𝑎𝑥𝑝𝑎𝑖𝑟…},Δ𝑡𝑝𝑎𝑟𝑒𝑛𝑡)

Find the maximum timestep allowed for the pair: 

Find the limiting timestep for the cell: 

Repeat the substep until the model step is complete: 

Δ𝑡𝑙𝑒𝑓𝑡 =  Δ𝑡𝑝𝑎𝑟𝑒𝑛𝑡 - Δ𝑡𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒



If  an algorithm does not have a way to handle multiple collisions, it must have an analogous 

method to constrain the probability < 1

Adaptive Time-Stepping Analogies

RemappingAlgorithm(RMA), Andrejczuk et al. (2010)

• RMA remaps between Superdroplets and binned mass every coalescence step

• Unterstrasser et al. (2017) proposes an adaptive substep when limited by bin concentration

• Comments on the stiffness of  the Hall kernel when there are large droplets

Weighted Flow Algorithm (WFA), Deville et al. (2011)

• used in PartMC (West, Riemer, et al., 2022)

• Particle-based Monte-Carlo algorithm

• Weighting is not a particle attribute

• optimizes the number of  pairs tested out of  the possible pairs



Z. D'Aquino, et al.. PyPartMC (2024), N. Riemer, et al (2019), J. H. Curtis et al., (2017) 

 

Adaptive Time-Stepping Analogies: WFA

𝑊(𝜇)

weighting function: 

𝑠𝑖𝑧𝑒

particle population:

superparticle 

population:

https://agupubs.onlinelibrary.wiley.com/authored-by/Riemer/N.


Adaptive Time-Stepping Analogies: WFA

𝑝𝛼 ∝
𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑖𝑟𝑠 𝑖𝑛 𝑏𝑖𝑛𝑖𝑗

𝑝𝑎𝑖𝑟𝑠 𝑡𝑒𝑠𝑡𝑒𝑑
∙ 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐾𝑒𝑟𝑛𝑒𝑙(𝑅𝑖, 𝑅𝑗)

• Weighted Kernel of  bin pair does not 

change in time

• Pairs tested is optimized at coarse bins 

by maximizing 𝑝𝛼 to 1 

𝑅𝑎𝑑𝑖𝑢𝑠 𝐵𝑖𝑛𝑠 𝑖
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𝑖𝑛
𝑠

𝑗

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐾 𝑅𝑖, 𝑅𝑗
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Adaptive Time-Stepping Analogies: WFA

• Weights are helpful for the 

optimization

• Resulting superparticle 

might not be the weight 

of  adding two smaller 

superparticles

• All 3 are probability 

checked for existence after 

a collision event based on 

their weights

𝑅𝑎𝑑𝑖𝑢𝑠 𝐵𝑖𝑛𝑠 𝑖
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𝐵

𝑖𝑛
𝑠

𝑗

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐾 𝑅𝑖, 𝑅𝑗



• Background on Cloud Processes

• Superdroplet Method for collision coalescence

• Defining the Deficit Problem/Adaptive Timestepping

• Adaptivity in a Box model

• Adaptivity in 2d prescribed flow



Box Model Test Setup

= Analytic Soln

= Julia

= PySDM

𝑁𝑠 = 217

Shima et al., (2009), Safranov (1962), Golovin (1963) 



Initialization



• Optimization and comparison of  initialization is explored in 

Unterstrasser et al. 2017 and 2019, Dziekan and Pawlowska 

2017, Matsushima et al. 2023) 

• Initializations with dynamic ranges of  multiplicities are 

shown to do best

• Matsushima et al. (2023) proposed a new init method that 

parameterizes this dynamic spread 

Initialization



𝑝𝑠𝑢𝑝𝑒𝑟𝑑𝑟𝑜𝑝𝑙𝑒𝑡 𝑝𝑎𝑖𝑟 = 𝜉𝑗 ∙ 𝑝𝑑𝑟𝑜𝑝𝑙𝑒𝑡 𝑝𝑎𝑖𝑟, 𝑐ℎ𝑜𝑜𝑠𝑒 𝜉𝑗> 𝜉𝑘

𝑑𝑟𝑜𝑝𝑙𝑒𝑡 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑒𝑣𝑒𝑛𝑡 = 𝜉𝑗 ∙ 𝜉𝑘 ∙ 𝑝𝑑𝑟𝑜𝑝𝑙𝑒𝑡 𝑝𝑎𝑖𝑟

Initialization

Dynamic range

It is advantageous to have many superdroplet events of  small multiplicities 𝜉𝑘



Lucky for deficit,  dynamic range also maximizes 𝜉𝑗/𝜉𝑘

𝑝𝑠𝑢𝑝𝑒𝑟𝑑𝑟𝑜𝑝𝑙𝑒𝑡 𝑝𝑎𝑖𝑟 = 𝜉𝑗 ∙ 𝑝𝑑𝑟𝑜𝑝𝑙𝑒𝑡 𝑝𝑎𝑖𝑟, 𝑐ℎ𝑜𝑜𝑠𝑒 𝜉𝑗> 𝜉𝑘

𝑑𝑟𝑜𝑝𝑙𝑒𝑡 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑒𝑣𝑒𝑛𝑡 = 𝜉𝑗 ∙ 𝜉𝑘 ∙ 𝑝𝑑𝑟𝑜𝑝𝑙𝑒𝑡 𝑝𝑎𝑖𝑟

Initialization

Dynamic range



SDM Adaptivity in a Box Model

• 15 runs

• Increasing error with more superdroplets??



SDM Adaptivity in a Box Model



(RMSE t =3600s)

Fraction of  largest error 

Deficit (#/s)



No Adaptivity

Adaptivity



• Background on Cloud Processes

• Superdroplet Method for collision coalescence

• Defining the Deficit Problem/Adaptive Timestepping

• Adaptivity in a Box model

• Adaptivity in 2d prescribed flow



2D prescribed velocity field

• Kessler 1969 Kinematic framework

• How does it behave with flow, grid exchange

• Unterstrasser et al. (2019) show less SD 
needed for 1d convergence

• 35 runs

• The results here only show varying time step 

• 1.5x1.5 km domain, 50x50 grid, 40SD/cell

• Initialized by Uniform Log(dry radius)

• Geometric Kernel

Fig. help thanks to Ola Strząbała







• Given these conditions, we do not see 

increased convergence of bulk properties 

with adaptive time stepping



𝑝𝛼 ∝
Δ𝑡

Δ𝑉
∙ 𝜉𝐽 ∙

(𝑁𝑆𝐷−1)𝑁𝑆𝐷
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∙ 𝐾 𝑅𝑖 , 𝑅𝑗 , ഥ𝜉𝐽 ∝ 𝑓 𝑖𝑛𝑖𝑡 ∙ (

𝑛𝑐𝑒𝑙𝑙 𝑑𝑟𝑜𝑝𝑙𝑒𝑡𝑠 ∙ Δ𝑉

𝑁𝑆𝐷
)

Despite Low Effect on the Convergence 
shown here, we still recommend implementation
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Despite Low Effect on the Convergence 
shown here, we still recommend implementation

• The setups used might not indicate any urgent need to reduce the deficit, but embracing the 
adaptivity makes the scheme more robust and less sensitive to arbitrary user settings

• Easily quantified nonphysical error that only lowers the growth

• Only affecting a small fraction of  the grid cells (<1%) – not a reason to lower timestep

• This is not a domain wide setting: extra computational effort is focused where needed 

• Increased superdroplet resolution does not reduce deficit



In summary…

• Sensitivity to deficit is much smaller than 
convergence on init methods/#sd

• Dynamic multiplicity range helps convergence 
and deficit while increasing Nsd does not

• PySDM and Droplets.jl are open source

• Ware, Bartman et al. (in prep.) 
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