Turbulence and atmospheric boundary layer Lecture 2

Marta Wacławczyk

Institute of Geophysics, Faculty of Physics, University of Warsaw marta.waclawczyk@fuw.edu.pl

March 7, 2020

Summary of lecture 1

(1) Characteristic features of turbulence

- non predictability, non-linearity, chaotic nature, large space and time variations of all quantities describing the flow, huge range of vortex scales, strong vortex interactions, intensification of mixing
(2) Dimensional analysis
- Non-dimensional parameters: $R e, P e, R a, P r, R i$
(3) Stability analysis
- Kelvin-Helmholz, Raighleigh-Taylor instabilities

4 Reynolds averaging

Governing equations in the index notation

Momentum balance

$$
\frac{\partial u_{i}}{\partial t}+\underbrace{u_{j} \frac{\partial u_{i}}{\partial x_{j}}}_{\text {inertia }}=-\frac{1}{\rho} \frac{\partial p}{\partial x_{i}}+\nu \frac{\partial^{2} u_{i}}{\partial x_{j} \partial x_{j}}+\underbrace{\delta_{i 3} b}_{\text {buoyancy }}+\underbrace{\epsilon_{i j 3} f u_{j}}_{\text {Coriolis }}
$$

Energy balance

$$
\frac{\partial b}{\partial t}+u_{j} \frac{\partial b}{\partial x_{j}}=\kappa \frac{\partial^{2} b}{\partial x_{j} \partial x_{j}}
$$

Continuity

$$
\frac{\partial u_{i}}{\partial x_{i}}=0
$$

Ensemble average operator

- Mean over infinite number of realisations

$$
\begin{gathered}
\overline{\Phi(\boldsymbol{x}, t)}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} \Phi^{(i)}(\boldsymbol{x}, t) \\
\overline{\Phi(\boldsymbol{x}, t)}=\int \phi f(\phi ; \boldsymbol{x}, t) \mathrm{d} \phi
\end{gathered}
$$

where $f(\phi ; \boldsymbol{x}, t)$ is the one-point probability density function of the variable $\Phi(\boldsymbol{x}, t)$ and ϕ is the sample space of $\Phi(\boldsymbol{x}, t)$, i.e. the space with possible values of this variable. Note that ϕ is an independent variable

Approximations of the ensemble average

- Mean over N realizations

$$
\overline{\Phi(\boldsymbol{x}, t)} \approx \overline{\Phi(x, t)}_{N}=\frac{1}{N} \sum_{i=1}^{N} \Phi^{(i)}(\boldsymbol{x}, t)
$$

- Time average

$$
\overline{\Phi(\boldsymbol{x}, t)} \approx \overline{\Phi(\boldsymbol{x}, t)}_{T}=\frac{1}{T} \int_{t-T / 2}^{t+T / 2} \Phi(\boldsymbol{x}, \tau) \mathrm{d} \tau
$$

where T should be larger than characteristic time scale of turbulent motions but smaller than the time scale of mean changes.

- Space average

$$
\overline{\Phi(\boldsymbol{x}, t)} \approx \overline{\Phi(x, t)}_{V}=\frac{1}{V} \int_{V} \Phi\left(\boldsymbol{x}^{\prime}, t\right) \mathrm{d} \boldsymbol{x}^{\prime}
$$

where the volume $V=L^{3}$, and L should be larger than characteristic length scale of turbulent motions but smaller than the length scale of mean changes.

Properties of the ensemble average operator

$$
\begin{gathered}
\overline{\Phi+\Psi}=\bar{\Phi}+\bar{\psi} \\
\overline{\bar{\Phi}}=\bar{\Phi}, \quad \overline{\phi \bar{\psi}}=\overline{\Phi \psi} \\
\frac{\overline{d \Phi}}{d s}=\frac{d \bar{\Phi}}{d s}
\end{gathered}
$$

But

$$
\overline{\Phi \psi} \neq \bar{\Phi} \bar{\psi}
$$

Reynolds decomposition

$$
\Phi=\bar{\Phi}+\phi^{\prime}
$$

where ϕ^{\prime} is the fluctuation around the mean and $\overline{\phi^{\prime}}=0$.

Reynolds-averaged equations

$$
u_{i}=\overline{u_{i}}+u_{i}^{\prime}, \quad b=\bar{b}+b^{\prime}, \quad p=\bar{p}+p^{\prime}
$$

Momentum balance

$$
\underbrace{\frac{\partial \overline{\bar{u}_{i}}}{\partial t}+\overline{u_{j}} \frac{\partial \overline{\bar{u}_{i}}}{\partial x_{j}}}_{(1)}+\underbrace{\frac{\partial \overline{u_{i}^{\prime} u_{j}^{\prime}}}{\partial x_{j}}}_{(2)}=\underbrace{-\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_{i}}}_{(3)}+\underbrace{\nu \frac{\partial^{2} \overline{u_{i}}}{\partial x_{j} \partial x_{j}}}_{(4)}+\underbrace{\delta_{i 3} \bar{b}}_{(5)}+\underbrace{\epsilon_{i j 3} f \overline{u_{j}}}_{(6)}
$$

(1) rate of change following a point moving with mean velocity
(2) Reynolds-stress term (a crucial difference in comparison to N-S!!!)
(3) mean pressure term
(1) mean viscous term
(5) mean buoyancy terms
(0) mean Coriolis force term

Reynolds-averaged equations

Energy balance

$$
\underbrace{\frac{\partial \bar{b}}{\partial t}+\overline{u_{j}} \frac{\partial \bar{b}}{\partial x_{j}}}_{(1)}+\underbrace{\frac{\partial \overline{b^{\prime} u_{j}^{\prime}}}{\partial x_{j}}}_{(2)}=\underbrace{\kappa \frac{\partial^{2} \bar{b}}{\partial x_{j} \partial x_{j}}}_{(3)}
$$

Continuity

$$
\frac{\partial \overline{u_{i}}}{\partial x_{i}}=0
$$

(1) rate of change following a point moving with mean velocity
(2) buoyancy-flux term
(3) mean molecular transport term

Second order moments

Turbulent fluxes

(1) Momentum flux $\overline{u_{i}^{\prime} u_{j}^{\prime}}$
(2) Buoyancy flux $\overline{b^{\prime} u_{i}^{\prime}}$

Positive vs. negative buoyancy flux

Closure problem

Dependent variables in Navier-Stokes system:

$$
u(\boldsymbol{x}, t), v(\boldsymbol{x}, t), w(\boldsymbol{x}, t), p(\boldsymbol{x}, t), b(\boldsymbol{x}, t)
$$

which gives 5 unknowns and $3+1+1=5$ equations
Dependent variables in Reynolds equations:

$$
\begin{gathered}
\overline{u(\boldsymbol{x}, t)}, \overline{v(\boldsymbol{x}, t)}, \overline{w(\boldsymbol{x}, t)}, \overline{p(\boldsymbol{x}, t)}, \overline{b(\boldsymbol{x}, t)}, \\
\overline{u^{2}(\boldsymbol{x}, t)}, \overline{v^{2}(\boldsymbol{x}, t)}, \overline{w^{2}(\boldsymbol{x}, t)}, \overline{u(\boldsymbol{x}, t) v(\boldsymbol{x}, t)}, \overline{u(\boldsymbol{x}, t) w(\boldsymbol{x}, t)}, \overline{v(\boldsymbol{x}, t) w(\boldsymbol{x}, t)} \\
\overline{u(\boldsymbol{x}, t) b(\boldsymbol{x}, t)}, \overline{v(\boldsymbol{x}, t) b(\boldsymbol{x}, t)}, \overline{w(\boldsymbol{x}, t) b(\boldsymbol{x}, t)}
\end{gathered}
$$

5 equations and 14 unknowns - Closure problem!!!

Derivation of Reynolds-stress transport equations

$$
\begin{aligned}
& \frac{\partial u_{i}}{\partial t}+u_{k} \frac{\partial u_{i}}{\partial x_{k}}=-\frac{1}{\rho} \frac{\partial p}{\partial x_{i}}+\nu \frac{\partial^{2} u_{i}}{\partial x_{k} \partial x_{k}}+\delta_{i 3} b+\epsilon_{i k 3} f u_{k} \\
& -\frac{\partial \overline{u_{i}}}{\partial t}+\overline{u_{k}} \frac{\partial \overline{u_{i}}}{\partial x_{k}}+\frac{\partial \overline{u_{i}^{\prime} u_{k}^{\prime}}}{\partial x_{k}}=-\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_{i}}+\nu \frac{\partial^{2} \overline{u_{i}}}{\partial x_{k} \partial x_{k}}+\delta_{i 3} \bar{b}+\epsilon_{i k 3} f \overline{u_{k}} \\
& \hline \frac{\partial u_{i}^{\prime}}{\partial t}+\overline{u_{k}} \frac{\partial u_{i}^{\prime}}{\partial x_{k}}+u_{k}^{\prime} \frac{\partial \overline{u_{i}}}{\partial x_{k}}+\frac{\partial u_{i}^{\prime} u_{k}^{\prime}}{\partial x_{k}}-\frac{\partial u_{i}^{\prime} u_{k}^{\prime}}{\partial x_{k}}= \\
& \\
& =-\frac{1}{\rho} \frac{\partial p^{\prime}}{\partial x_{i}}+\nu \frac{\partial^{2} u_{i}^{\prime}}{\partial x_{j} \partial x_{j}}+\delta_{i 3} b^{\prime}+\epsilon_{i k 3} f u_{k}^{\prime}
\end{aligned}
$$

Procedure:

- Multiply u_{i}^{\prime} transport equation by u_{j}^{\prime}
- Multiply u_{j}^{\prime} transport equation by u_{i}^{\prime}
- Add both equations
- Average resulting equation

$$
u_{j}^{\prime} \frac{\partial u_{i}^{\prime}}{\partial t}+u_{i}^{\prime} \frac{\partial u_{j}^{\prime}}{\partial t}=\frac{\partial u_{i}^{\prime} u_{j}^{\prime}}{\partial t}
$$

Derivation of Reynolds-stress transport equations

RS transport equation

$$
\begin{aligned}
& \underbrace{\frac{\partial \overline{u_{i}^{\prime} u_{j}^{\prime}}}{\partial t}+\overline{u_{k}} \frac{\partial \overline{u_{i}^{\prime} u_{j}^{\prime}}}{\partial x_{k}}}_{(1)}+\underbrace{\frac{\partial \overline{u_{i}^{\prime} u_{j}^{\prime} u_{k}^{\prime}}}{\partial x_{k}}}_{(2)}+\underbrace{\frac{1}{\rho}\left(\frac{\partial \overline{p^{\prime} u_{j}^{\prime}}}{\partial x_{i}}+\frac{\partial \overline{p^{\prime} u_{i}^{\prime}}}{\partial x_{j}}\right)}_{\text {(3) }}=\underbrace{\overline{\frac{p^{\prime}}{\rho\left(\frac{\partial u_{j}^{\prime}}{\partial x_{i}} \frac{\partial u_{i}^{\prime}}{\partial x_{j}}\right)}}, ~}_{\text {(4) }} \\
& -\underbrace{\overline{u_{i}^{\prime} u_{k}^{\prime}} \frac{\partial \overline{u_{j}}}{\partial x_{k}}-\overline{u_{i}^{\prime} u_{k}^{\prime}} \frac{\partial \overline{u_{j}}}{\partial x_{k}}}_{(5)}+\underbrace{\nu \frac{\partial \overline{u_{i}^{\prime} u_{j}^{\prime}}}{\partial x_{k} \partial x_{k}}}_{\text {(6) }}-\underbrace{2 \nu\left(\overline{\left.\frac{\partial u_{j}^{\prime}}{\partial x_{k}} \frac{\partial u_{i}^{\prime}}{\partial x_{k}}\right)}\right.}_{(7)} \\
& +\underbrace{\delta_{i 3} \overline{b^{\prime} u_{j}^{\prime}}+\delta_{j 3} \overline{b^{\prime} u_{i}^{\prime}}}_{(8)}+\underbrace{\epsilon_{i k 3} f \overline{u_{k}^{\prime} u_{j}^{\prime}}+\epsilon_{j k 3} f \overline{u_{k}^{\prime} u_{i}^{\prime}}}_{(9)}
\end{aligned}
$$

Derivation of Reynolds-stress transport equations

(1) Transport with mean velocity
(2) Turbulent transport
(3) Pressure transport
(9) Pressure-strain rate tensor (redistribution)
(3) Shear production term
(0) Viscous transport
(3) Dissipation tensor
(8) Buoyancy production (positive or negative)
(9) Coriolis term (redistribution)

References

國 S. B. Pope (2000)
Turbulent Flows
Cambridge University Press

References

國 S. B. Pope (2000)
Turbulent Flows
Cambridge University Press

The End

