Exercise Sheet 6

Questions, comments and corrections: e-mail to Marta.Waclawczyk@fuw.edu.pl

1. Virtual mass of an accelerating body in ideal fluid. For a rigid body moving with velocity $\mathbf{U}(t)$ through an ideal fluid, which was initially at rest, the velocity potential has the form

$$\phi(\mathbf{r},t) = \mathbf{U}(t) \cdot \mathbf{\Phi}[\mathbf{r} - \mathbf{R}(t)],\tag{1}$$

where Φ depends on the geometry of the immersed body and $\mathbf{R}(t)$ denotes the position of a reference point of the body.

(a) Use the appropriate form of the Bernoulli equation to show that the force on the body due to the pressure field,

$$\mathbf{F} = -\int_{\partial V} p\mathbf{n} ds \tag{2}$$

is of the form

$$F = \rho \frac{\mathrm{d}\mathbf{U}}{\mathrm{d}t} \cdot \int_{\partial V} \mathbf{\Phi} \mathbf{n} ds + \rho \int_{\partial V} \left(\frac{1}{2}\mathbf{u}^2 - \mathbf{U} \cdot \mathbf{u}\right) \mathbf{n} ds \tag{3}$$

where ∂V is the boundary of the immersed object.

(b) Show that if $d\mathbf{U}/dt = 0$, then

$$\mathbf{F} \cdot \mathbf{U} = 0, \tag{4}$$

and interpret this result physically. Use the identity (valid for $\nabla^2 \phi = 0$)

$$\frac{1}{2} \int_{\partial V} (\nabla \phi)^2 \mathbf{n} \mathrm{d}s = \int_{\partial V} \nabla \phi (\nabla \phi \cdot \mathbf{n}) \mathrm{d}s.$$
(5)

(c) The velocity potential $\phi(r, \theta)$ (in spherical coordinates) of the flow around a stationary sphere of radius *a* immersed in a uniform flow $\mathbf{U} = U\hat{\mathbf{z}}$ is

$$\phi(r,\theta) = Ur\cos\theta \left(1 + \frac{1}{2}\frac{a^3}{r^3}\right).$$
(6)

Since the flow has axial symmetry, being \hat{z} the symmetry axis, the potential ϕ does not depend on the azimuth angle φ .

Show that, for the sphere moving in a fluid which was initially at rest,

$$\Phi[\mathbf{r} - \mathbf{R}(t)] = -\frac{1}{2}a^3 \frac{\mathbf{r} - \mathbf{R}(t)}{|\mathbf{r} - \mathbf{R}(t)|^3}.$$
(7)

If the sphere is accelerated with $d\mathbf{U}/dt = -(dU/dt)\hat{\mathbf{z}}$, then show that

$$\mathbf{F} = M' \frac{\mathrm{d}U}{\mathrm{d}t} \hat{\mathbf{z}},\tag{8}$$

where

$$M' = \frac{2}{3}\pi a^3 \rho \tag{9}$$

is the virtual mass of the sphere.

2. Obtain the two-dimensional irrotational flow past a circular cylinder in terms of the stream function ψ , which is related to the velocity field **u** through

$$\mathbf{u} = \nabla \times (\psi \hat{\mathbf{z}}),\tag{10}$$

where $\hat{\mathbf{z}}$ is the unit vector perpendicular to the plane of the flow.

3. Force on a cylinder with circulation. Consider a stationary circular cylinder immersed in a uniform flow $U\hat{\mathbf{x}}$. To simulate a rotating cylinder, we introduce a bidimensional free vortex

$$\mathbf{u} = \frac{k}{r} \mathbf{e}_{\theta},\tag{11}$$

with a constant k, which measures the strength of the vortex.

- (a) Calculate the constant k in terms of the circulation Γ .
- (b) Find the velocity components of the flow resulting from superposition of velocity potentials.
- (c) Calculate the pressure field.

.

(d) Calculate the force the fluid exerts on the cylinder.