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Summary of lecture 4

1 Transport equation for the turbulence kinetic energy

2 Turbulence modelling
0-equation, algebraic models (mixing length), 1-equation models
(e.g. Spallart-Allamaras), 2-equation models (k − ε, k − ω),
Reynolds-stress models

3 Simplifications - statistical stationarity, statistical homogeneity, isotropy

4 Decaying turbulence

5 Free-shear flows

6 Large Eddy Simulations
filtering operation, properties of the filter, Smagorinsky model,
Germano dynamic model
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Structure of turbulence

Energy cascade:
”Big whirls have little whirls that
feed on their velocity, and little
whirls have lesser whirls and so
on to viscosity. ”
Lewis Fry Richardson
(1881-1953)
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Structure of turbulence

Energy cascade:
Dissipation is placed at the end
of a sequence of processes.
Hence, the rate of dissipation ε is
determined by the first process in
the sequence, that is - transfer of
energy from the largest eddies.

ε ∼ U3

L
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Kolmogorov’s theory

L0 - length scale of large, energy-containing eddies,
η - length scale of the smallest, dissipative eddies

Kolmogorov’s hypothesis of local isotropy

At sufficiently large Reynolds number, the small scale turbulent motions
are statistically isotropic

First Kolmogorov’s similarity hypothesis

In every turbulent flow at sufficiently high Re the statistics of small-scale
motions have a universal form that is uniquely determined by ν and ε.

Second Kolmogorov’s similarity hypothesis

Second similarity hypothesis - in every turbulent flow at sufficiently high
Re the statistics of the motions of scale l such that L0 >> l >> η have a
universal form that is uniquely determined by ε, independent of ν.
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Kolmogorov’s theory

First Kolmogorov’s similarity hypothesis

In every turbulent flow at sufficiently high Re the statistics of small-scale
motions have a universal form that is uniquely determined by ν and ε.

Kolmogorov’s scales

η =

(
ν3

ε

)1/4

, uη = (νε)1/4 , τη =
(ν
ε

)1/2

Kolmogorov’s scales, constructed based on the viscosity ν and the
dissipation rate ε characterise the smallest dissipative eddies.
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Structure functions

Sij(x , r , t) = [ui (x , t)− ui (x + r , t)] [uj(x , t)− uj(x + r , t)]

Let us identify the longitudinal velocity component along the vector r

between the points: uL and two transverse components uN1 and uN2

longitudinal structure function

SLL = [uL(x , t)− uL(x + r , t)]2

transverse structure function
SN1N1 = [uN1(x , t)− uN1(x + r , t)]2

transverse structure function
SN2N2 = [uN2(x , t)− uN2(x + r , t)]2
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Structure functions in isotropic turbulence

Sij(x , r , t) = Sij(r , t)

Moreover, SN1N1 = SN2N2 = SNN and Sij = 0 for i 6= j .
Tensor calculus provides the following form of Sij :

Sij(r , t) = SNNδij + (SLL − SNN)
ri rj
r2

(1)

From the continuity equation it follows that

∂Sij
∂ri

= 0

If we differentiate Eq. (1) with respect to ∂
∂ri

= ri
r
∂
∂r we obtain

SNN = SLL +
1

2
r
∂SLL
∂r

Hence, in the isotropic turbulence the structure function tensor is
determined by a single scalar function SLL.
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Structure functions and Kolmogorov’s theory

First Kolmogorov’s similarity hypothesis

In every turbulent flow at sufficiently high Re the statistics of small-scale
motions have a universal form that is uniquely determined by ν and ε.

SLL = F (r , ε, ν)

Dimensional analysis: Sij has the dimension of m2/s2, same as (εr)2/3 so,
let us create a non-dimensional function

SLL
(εr)2/3

= F+(r , ε, ν)

The only non-dimensional combination of r , ε, ν is rε1/4/ν3/4 = r/η
Hence,

SLL = (εr)2/3F+

(
r

η

)
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Structure functions and Kolmogorov’s theory

Second Kolmogorov’s similarity hypothesis

Second similarity hypothesis - in every turbulent flow at sufficiently high
Re the statistics of the motions of scale l such that L0 >> l >> η have a
universal form that is uniquely determined by ε, independent of ν.

SLL = (εr)2/3F+

(
r

η

)
In the inertial subrange the function F+ is a constant and

SLL = C2(εr)2/3, SNN =
4

3
C2(εr)2/3,

where C2 ≈ 2, as follows from measurements.
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Structure functions and Kolmogorov’s theory

Sij(r , t) = C2(εr)2/3

(
4

3
δij −

1

3

ri rj
r2

)
,

Thus, in the isotropic turbulence, in the inertial range the Kolmogorov’s
hypotheses are sufficient to determine the dissipation rate ε (characteristic
of small-scales) in terms of the second-order structure function Sij , the
distance r and the constant C2.
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Structure functions and Kolmogorov’s theory

Once SLL is calculated, it can be plotted on the log-log plot. The
power-law function is a straight line on such plot with the power term 2/3
corresponding to the slope, and the constant term C2ε

2/3 corresponding to
the intercept of the line.

log SLL = log r2/3 + logC2ε
2/3 = 2/3 log r + logC2ε

2/3
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Structure functions - the Kármán-Howarth equation

From the Navier-Stokes equations, transport equations for SLL can be
derived. This is the so-called Kármán-Howarth equation. In the stationary
case this equation reads

0 = 6ν
∂SLL
∂r
− SLLL −

4

5
εr

where SLLL = (uL(x , t)− uL(x + r , t))3.
The viscous term is negligible in the inertial subrange, which leads to the

Kolmogorov’s 4/5 law

SLLL =
4

5
εr

This is an exact result (no experimental constant). Allows for a more
precise estimation of ε in the isotropic case. (However, the size of the
ensemble necessary to calculate SLLL with a good accuracy is larger than
for SLL.)
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Two-point correlations

Rij(x , r , t) = ui (x , t)uj(x + r , t)

In the isotropic turbulence

Rij(x , r , t) = Rij(r , t)

Longitudinal and transverse autocorrelation functions

f (r , t) =
uL(x , t)uL(x + r , t)

u2
L(x , t)

=
RLL(r , t)

u2
L

g(r , t) =
uN(x , t)uN(x + r , t)

u2
N(x , t)

=
RNN(r , t)

u2
N

where u2
L = u2

N = u
′2
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Autocorrelation functions
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Autocorrelation functions - length scales

Integral length scale:

L =

∫ ∞
0

f (r)dr

Taylor microscales

λf =

[
−1

2

d2f (r)

dr2

∣∣∣∣∣
r=0

]−1/2

λg =

[
−1

2

d2g(r)

dr2

∣∣∣∣∣
r=0

]−1/2
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Energy spectra

One-dimensional spectra Eij - twice 1D Fourier transform of Rij

Eij(κl) = 2F (Rij)

In the inertial subrange

ELL(κl) = Ckε
2/3κ

−5/3
l

Marta Wac lawczyk (UW) Turbulence... March 23, 2020 17 / 22



Energy spectra
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Energy spectra

Derivation of the energy spectrum function E (κ).
Velocity spectrum tensor

Φij(x ,κ, t) =

(
1

2Π

)3 ∫∫∫
Rij(x , r , t)e−iκ·r dr .

Energy spectrum function is defined as

E (κ) =
1

2

∮
Φii (κ, t)dS

or, equivalently

E (κ) =
1

2

∫∫∫
Φii (κ, t)δ(|κ| − κ)dV
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Energy spectra

Turbulence kinetic energy

k =

∫ ∞
0

E (κ)dκ

Turbulence kinetic energy dissipation rate

ε =

∫ ∞
0

2νκ2E (κ)dκ

Relation between E (κ) and the 1D spectral functions

E (κ) =
1

2
κ3 d

dκ

(
1

κ

dELL

dκ

)
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The End
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