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Figure 1: In an early study of turbulence Leonardo da Vincd wrote “Ohserve the
motion of the surface of the water, which resembles that of hair, which has two
motions, of which one is caused by the weight of the hair, the other by the direction
of the curls; thus the water has eddyving motions, one part of which is due to the
principal current, the other to random and reverse motion.” |(Lumley, J.L.. 1997
Phys. Fluids A 4, 203)



Turbulence, as a flow regime, can be defined by its characteristic features.

S.B. Pope Turbulent Flows (2000) ,...an essential feature of turbulent flows is that the fluid
velocity field varies significantly and irregularly in both position and time.”

Turbulence:

Irregularity, unpredictability, unsteadiness, large variation of temporal and spatial scales
which interact with each other, enhanced mixing

ENCYKLOPEDIA BRITAENNICA:

Atmospheric turbulence: small-scale, irregular air motions characterized by winds that
vary in speed and direction. Turbulence is important because it mixes and churns the
atmosphere and causes water vapour, smoke, and other substances, as well as energy, to
become distributed both vertically and horizontally.

fractal [from the Latin word fractus (“fragmented,” or “broken”)], any of a class of complex
geometric shapes that commonly have “fractional dimension,” a concept first introduced
by the mathematician Felix Hausdorff in 1918. Fractals... are capable of describing many
irregularly shaped objects or spatially nonuniform phenomena in nature such as
coastlines and mountain ranges.... Many fractals possess the property of self-similarity, at
least approximately, if not exactly. A self-similar object is one whose component parts
resemble the whole. This reiteration of details or patterns occurs at progressively smaller
scales (ENCYKLOPEDIA BRITAENNICA)



Features of turbulent flows:

Large range of temporal and spatial
scales;

Nonlinear advection effects play an
important role;

Unpredictable;
Irreversible.




Figure 1.1: Examples of turbulent flows at the surface of the Sun, in the Earth’s
atmosphere, in the Gulf Stream at the ocean surface, and in a vulcanic eruption.

Many authors mention also:

Significant vortex streching;
Energy cascade.



Transition to turbulence

Osborne Reynolds
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Osborne Reynolds:

ON THE DYNAMICAL THEORY OF INCOMPRESSIBLE VIS-

COUS FLUIDS AND THE DETERMINATION OF THE

CRITERION.

[From the “ Philosophical Transactions of the Royal Society,” 1895.]

(Read May 24, 1894.)

In 1850, after Joule’s discovery of the Mechanical Equivalent of Heat,
Stokes showed, by transforming the equations of motion—with arbitrary
stresses—so as to obtain the equations of (“Vis-viva”) energy, that this
equation contained a definite function, which represented the difference
between the work done on the fluid by the stresses and the rate of increase
of the energy, per unit of volume, which function, he concluded, must,
according to Joule, represent the Vis-viva converted into heat.

This conclusion was obtained from the equations irrespective of any
particular relation between the stresses and the rates of distortion. Sir G.
Stokes, however, translated the function into an expression in terms of the
rates of distortion, which expression has since been named by Lord Rayleigh
the Dissipation-Function.

2. In 1883 I succeeded in proving, by means of experiments with colour
bands—the results of which were communicated to the Society *—that when
water is caused by pressure to flow through a uniform smooth pipe, the motion
of the water is direct, i.e., parallel to the sides of the pipe, or sinuous, s.e.,
crossing and re-crossing the pipe, according as U, the mean velocity of the
water, as measured by dividing @, the discharge, by A, the area of the
section of the pipe, is below or above a certain value given by

K| Dp,

where D is the diameter of the pipe, p the density of the water, and K a
numerical constant, the value of which according to my experiments, and, as
I was able to show, to all the experiments by Poiseuille and Darcy, is for
pipes of circular section between

1900 and 2000,

or, in other words, steady direct motion in round tubes is stable or unstable
according as

p 1—)‘?—5 > 1900 or < 2000,

the number K being thus a criterion of the possible maintenance of sinuous
or eddying motion,

3. The experiments also showed that K was equally a criterion of the
law of the resistance to be overcome—which changes from a resistance
proportional to the velocity, and in exact accordance with the theoretical
results obtained from the singular solution of the equation, when direct
motion changes to sinuous, s.e, when

DU,
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4. In the same paper I pointed out that the existence of this sudden
change in the law of motion of fluids between solid surfaces when

DUm=§K

proved the dependence of the manner of motion of the fluid on a relation
between the product of the dimensions of the pipe multiplied by the velocity
of the fluid, and the product of the molecular dimensions multiplied by the
molecular velocities which determine the value of

7

for the fluid, also that the equations of motion for viscous fluid contained
evidence of this relation.



Equations of motion in Boussinesq approximation:
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Notations:

p — pressure, u — velocity, ¢ — time, p - density, b — buoyancy, f—
Coriolis parameter, - v viscosity, k¥ — thermal conductivity coefficient.

We can add equations for other scalars (e.g. concentration) which have
the same form as (1.3) but are passive, 1.e. they do not influence the
velocity field (one-way coupling).



These equations have conservative integral invariants for energy, and all powers and
other functionals of buoyancy, in the absence of friction and diffusion. For non-
conservative dynamics, the energy and scalar variance satisfy the equations,

%—f = -7, Z—? = —Tp, (1.5)
where,
E,B,T.Tp] = [/[dm .t .6y . (1.6)
and,
e = %U* u— bz, e=rVu:Vu, e, =Kk Vb- Vb (1.7)

In deriving (1.5), it is assumed that there are no boundary fluxes of energy or scalar
variance. Thus, these integrals measures of the flow can only decrease with time
through the action of molecular viscosity and diffusivity.

Every problem we will consider lies within the set of solutions of the PDE system in
(1.2) through (1.4). No general solution 1s known, nor 1s any in prospect, because
we do not know a mathematical methodology that seems powerful enough. However
computers are giving us access to progressively better particular solutions, 7.e. with
progressively larger Re.



Non-dimensional form of momentum equations:
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e Inertia and friction

The Reynolds number is the ratio of inertia and friction,

UL
Re = — (1.8)
1%
Here U 1s a characteristic velocity scale, L is a length scale, and v 1s the kine-
matic viscosity of the fluid. In turbulent flows Re > 1, advective dominance =
nonlinear dynamics = chaotic evolution and broadband spectrum.

The focus of this course 1s on turbulence in the Earth’s ocean and atmosphere.
Typical values for v near the Earth’s surface are 1.5 x 10™° m? s™! for air
and 1.0 x 107% m? s™! for water. These values are small enough, given typical
velocities U, that Re > 1 on all spatial scales L from the microscale of about
1 mm to the planetary scale of about 10* km. For example, U = 1 m s~ ! and

L = 10° m give Re = 10? — 10'°.

For Re > 1, the frictional term is small, at least in some sense. Paradoxically,
however, the dissipation terms in (1.5) are usually not small. Thus, there must
be a profound difference in solutions between the asymptotic tendency as Re —
o0, and the Euler limit, Re = oc or v = 0.
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Localized vortex roll up Vortex ring

. Re=3700.




e Advection and diffusion Ul
Pe = - (1.9)

K

The Peclet number is the direct analog of Re for a conserved tracer with
a diffusivity k£ (i.e. a scalar ¢ satistying an equation like that of buoyancy)
and measures the relative importance of advection and diffusion. At large Pe,
the tracer evolution 1s dominated by advection. Once more, the limit Pe —
oo 1s very different from Pe = oc, because dissipation, no matter how small,
eventually is responsible for removing structure from the tracer field.

e LFriction and diffusion y

Pr=-— (1.10)
F

The frictional time scale is t,, = L? /v and the diffusive timescale t,, = L?/x. The
Prandtl number is defined as the ratio of these two timescales, Pr = t,./t,.
The Prandtl number 1s a property of the fluid . not of the particular flow.
Hence there is a restriction on the transfer of information from experiments
with one fluid to those with another. For Pr > 1 the scales at which friction
becomes important are larger than those for diffusion and, at some small scale,
we expect to find smooth velocity fields together with convoluted tracer fields.

The Prandtl numbers for air and water are 0.7 and 12.2 respectively.



e Inertia and Coriolis I
Ro = — (1.11)

fL
The Rossby number Fo measures the relative importance of the real inertial
forces and the fictitious Coriolis force, that appear because of the rotating ref-
erence system. Thus Ro measures the importance of rotation in the problem at
hand. FRo > 1 characterizes essentially non-rotating turbulence, while Ro < 1

flows are strongly affected by rotation.

¢ Buoyancy and diffusion

AbL?
Ra = (1.12)

K1/

In convective problems, motions are generated by mmposing an unstable den-
sity stratification on the fluid (9b/9z < 0). In these problems, it is useful to
characterize turbulence in terms of the Rayleigh number, i.e. the ratio of
the diffusive t,, = L?/x and buoyancy t, = (L/Ab)'/? timescales. The buoyancy
scale Ab 1s the buoyancy difference maintained across the layer depth L through
external forcing. If the forcing 1s imposed by maintaining a temperature dif-
ference AT, then one has Ab = gaAT, where a 1s the coefficient of thermal
expansion of the fluid, and ¢ the acceleration of gravity. Convection starts if
te > tp, t.e. if RaPr > 1, when diffusion is too slow to change substantially
the buoyancy of water/air parcels as they rise.



e buoyancy and 1nertia

. 0Objoz
Rt = S aar

In the presence of stable buovancy stratification., vertical motions tend to be

suppressed, but turbulence can still emerge, if there 1s enough energy in the

horizontal velocity field. A useful parameter to characterize the flow in these

problems is the ratio of the buoyancy timescale #, = (L/Ab)Y2 = 1/(9b/d=)'/?

and the inertial timescale due to horizontal shears in the flow t; = L/U =

1/(0u/0=z). This ratio is called the gradient Richardson number Ri. If Ri <
1, buovancy can be neglected in the momentum equations, and it becomes a
passive scalar with no feedbacks on the dynamics.

(1.13)

A final remark about the only term that never appeared explicitly in the nondimen-
sional numbers presented: the pressure force. Pressure can be formally eliminated
from the equations. This 1s a consequence of the Boussinesq approximation. We
simply need to take the divergence of the momentum equation in (1.2) and note that
V -1y = 0 because of incompressibility. This yvields the relation,

Vip = poV - [—(u -V)u+vViu+bz — f2 x u] : (1.14)

Since there are no time derivatives in (1.14), pressure is a purely diagnostic field,
which 1s wholly slaved to u. It can be calculated from (1.14) and then substituted
for the pressure gradient force in the momentum equations. Its role is to maintain
imcompressibility under the action of all other forces. Therefore it would be redundant
to introduce nondimensional parameters involving pressure, because those parameters
could be expressed as combinations of the other parameters already discussed.



Kelvin-Helmholz instability

Instability of the interface between two fluids of different densities and different speeds.
Example is wind blowing over water: The instability manifests in waves on
the water surface.

In the absense of surface tension, the instability develops for all speeds
(flow is unconditionally unstable).




Rayleigh-Taylor instability

Instability of the interface between two fluids, the heaviest above the lightest.
In this configuration surface tension plays a stabilizing role while gravity
is destabilizing.

PP,

Pictures from: http://hmf.enseeiht.fr/travaux/CD0001/travaux/optmfn/hi/01pa/hyb72/rt/rt.htm
https://en.wikipedia.org/wiki/Mushroom_cloud


http://hmf.enseeiht.fr/travaux/CD0001/travaux/optmfn/hi/01pa/hyb72/rt/rt.htm

Kelvin-Helmholtz instability with Ri=.038, Re=5000
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Rayleigh-Taylor instability with Ri=infinity,
Ra=6000000, Re=300



Dominant shear instability with Ri=-0.038,
Ra=3400000, Re=3600



Dominant convective instability with Ri=-1.34,
Ra=31000000, Re=1800



How to find solutions of the equations of motion or
determine charactieristic features of these equations?

- exact analytical solutions for certian flow cases and
certian parameters

-analytical approximate solutions

-numerical solutions: DNS

-statistical approaches which determine characteristic
features of equations

-dimensional analysis



Deriviation of RANS Equations

The basic tool required for the derivation of the RANS equations from the mstantaneous Navier-
Stokes equations 1s the Revnolds decomposition. Reynolds decomposition refers to separation of the
flow variable (like velocity ) into the mean (time-averaged) component (U ) and the fluctuating

/
component ( 2 ).[2] Thus,

u(x,t) = a(x) + u'(x, ﬂ[ﬁl

where, & = (2,9, 2) 1s the position vector.

The following rules will be useful while deriving the RANS. If f£andg are two flow variables (like
density (p), velocity (u), pressure (p), etc.) and s 1s one of the independent variables (x.y.z, or 7) then,

?=f
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Now the Navier-Stokes equations of motion [4] for an incompressible Newtonian flwd are:

du; .
or;
Ou; O 1 Op 9% u;

Bt g 5B T Y Baia,

= ! 2]
Subsituting, Ui =U +U,p=pP+P , etc. [5] and taking a time-average of these equations
yeilds,

oF;
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ot 7 Oz, 1or; ' pOx; dx;0r;

The momentum equation can also be written as, [6]

o1; 1 ou;u; <+ 10p P  Guy;

ot dx; =Ji- p Ox; +H:91‘j3rj dx;




On further manipulations this yields,

o1; 4 o, f—i— o [
por + P =pfi+ 75—
ot 81*3 or

J
- 1 (ou; O,
Sff—i(a—rﬁari

—p8;; + 2uS;; — puiu}]

where, ) 1s the mean rate of strain of strain tensor.



Notes

L.

)

2 The true tume average (J‘: ) of a variable (x) 1s defined by,

- lim = [ 24
) TEEGT T dt

In general for a time-average to be useful quantity, it 1s required that the average (X )be
independent of the starting time (7). This constraint 1s important for otherwise using time-

averaging would be meaning less. This implies that the average value (}L ) 1s independent of
time (7). Since it 1s not possible to integrate over an infinte time period, it 1s necessary to
restict the mtegration to some finite, yet large time interval. This interval is so selected that the

term X is independent of the length of the interval (7). However, the mdependence from 7,

can no longer be ensured. Only 1n case of steady flows will X be independent of both 7, and
T Thus,

) 1 to+T
}'L (‘f[ﬂ T T dt

2 By definition, the mean of the fluctuating quantity is zero(u' = 0).

. 2 Some authors prefer using U instead of U for the mean term (since an overbar i 1S used to

represent a vector). Also 1t 1s common practice to represent the fluctuating term u by u, even
though u refers to the instantaneous value. This 1s possible because the two terms do not

,
appear simultaneously in the same equation. to avoid confusion we will use u, %, and u

to represent the instantaneous, mean and fluctuating term.

4. » The equations are expressed in tensor notation, which greatly simplifies the maths.
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Time averaging these equations yeilds,

0 (& + u;)
=0
31?,—;
Ai+u) .\ O(@+u) N 10(+p) , P(@+y)
+ (1 +1) = (f+ ) -3 rE
ot dr; p Ox; 0r;0x;
Note that the nonlinear terms (like Yili) can be simpliﬁed to,
;= (4 + up) (T + uf) = @ + Gui + uitd; + wiup = 1 + uiy;
6. 2 This follows from the mass conservation equation which gives,
ou; - % . % oy

31?1; Bri 31‘1;



