Planetary boundary
layer

and atmospheric
turbulence.

Szymon P. Malinowski
Marta Wactawczyk

Institute of Geophysics UW
2017/18

Lecture 03

ll Te) El l{ |

Clerey

& .;-.;;.|||:|'|I|'III.'-'.

ccldies

A
|
j.

[nertial seale

ClersY
dissipating
celelies

Kohuosorov

log k



Turbulent kinetic energy - TKE.

Adding the contributions due to the 3 velocity components and rewriting in Einstein
notation we have

i} _

and (b) buoyant production

and lost through dissipation
(317
dissipation
The buoyant production term may be either positive (generation of kinetic energy,
loss of potential energv) or negative (loss of KE, increase in PE).




Homogeneous and isotropic turbulence.

For turbulence to be isotropic: (a) Coriolis and buoyancy must be unimportant and
therefore neglected (b) There must be no large-scale shear in any direction. If turbu-

s otope  then there are o spatalgradiets in any aeraged quatitis
Hence for 1sotropic, homogeneous turbulence, the kinetic energy equation reduces to:
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or

d T
= —AVTNT (4.3)




TKE changes only by viscous dissipation. Of course this in unsustainable - a source
of kinetic energy is needed. TKE sources (shear production, buoyant production) are
NOT 1sotropic and homogeneous. We sidestep this contradiction by assuming that
for large Reynolds numbers, although 1sotropy and homogeneity are violated by the
mechanism producing the turbulence, they still hold at small scales and away from
boundaries. Then the turbulence production can be represented simply bv a forcing
term F', assumed to be 1sotropic and homogeneous:

d
—F=—¢+F 4.4
= € + (4.4)

Production of TKE
Changes of TKE Dissipation of TKE

In case of stationary turbulence production is balanced by dissipation.



Structure functions:
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Structure functions in homogeneous isotropic turbulence (HIT):

T:,:’f'],'
T.Z

D-‘ij (T: t) — DNN(T: t)b‘!; £ [DLL(T: t) _ DNN(T: t)]
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DNN(T, t) = Llvi (T‘, f) + ET.EDLL(T! ?f)

In HIT structure functions Dij(r,t) are determined by the single scalar function D_ (r.t).



Kolmogorovs theory (1941):

H1. Hypothesis of local isotropy — at sufficiently high Re number the small-scale motins are
statistically isotropic

H2. First similarity hypothesis — in every turbulent flow at sufficiently high Re the statistics
of small-scale motions have a universal form that is uniquely determined by v and «.

n=(v/e)" un=(v%:)”4 ‘Cn=(\//£)1/2

H3. Second similarity hypothesis - in every turbulent flow at sufficiently high Re the statistics
of the motions of scale /such that [, » [ »n have a universal form that is uniquely

determined by ¢, independent of v.

Universal equilibrium range A
Dissipation range A Inertial subrange Energy-containing range
Y €
\4 >




Kolmogorovs theory (1941) [from Frisch (1990)]:

The Navier—-Stokes equations for incompressible fluid flow possess a number of
symmetries (invariance groups). When boundaries are ignored, the symmetries
include : space and time translations, rotations, parity (space and velocity reversal)
and galilean transformations. If the viscosity v = 0, an infinite class of additional
symmetries appears, the scaling transformations:

r—>Ar, v—>Av, t—->A"", AeR,. (1)

Here, t, r and v are, respectively, the time, position and velocity variables. 1t is
assumed that pressure has been eliminated from the Navier—Stokes equation through
use of the incompressibility constraint. The different scaling groups are labelled by
the scaling exponent /e R. ( )

I shall present the reformulation in the form of numbered hypotheses.

H1. In the limit of infinite Reynolds numbers, all the possible symmetries of the
Navier—Stokes equation, usually broken by the mechanisms producing the turbulent flow,
are restored in a statistical sense at small scales and away from boundaries.

The words ‘small scales” can be technically defined by considering velocity
increments over a distance ! small compared to the integral scale(l,:
Velocity differences at scale / So(r.1) = v(r+1)— v(r). (2)

We may then define, for example, statistical invariance under space-translations
(homogeneity) by :
ov(r+gq.,l) ="0dv(r,l), q<l,, (3)

where =% means ‘equality in law’ (identical statistical properties).



Since there is an infinity of different possible scaling exponents %, additional
assumptions are needed.

H2. Under the same assumptions as in H1, the turbulent flow is assumed to be self-
stmelar at small scales, i.e. to possess a single scaling exponent h.

The value of % is obtained from

H3. Under the same assumptions as in HI, the turbulent flow is assumed to have
a finite non-vanishing mean rate of dissipation € per unit mass.t

From H2 and H3, the value of the scaling exponent can be readily obtained.
Indeed, Kolmogorov (1941¢) has derived the following relation from the Navier—
Stokes equation, under the sole assumptions of homogeneity, isotropy and finite

mean energy dissipation : .
2y p 3rd order structure function

Sy(l) = {(Bv,(r, 1)? ) = — 1], (4)

Here, ov, denotes the component of the velomt}r increment parallel to the
displacement vector [. The function S, is called the third order (longitudinal)
structure function. The increment / is assumed by Kolmogorov to be small compared
to the integral scale [,. With the assumption H2, under rescaling of the increment [
by a factor A, the left-hand side of (4) changes by a factor A3 while the right-hand
side changes by a factor A. Hence,

h =3 ()

\ Universal scaling exponent



Under the assumption that moments of arbitrary integer order p of the velocity
increment exist (there is considerable experimental evidence for this assumption),
the self-similarity hypothesis implies scaling laws for structure functions of arbitrary

order: 1
S,(l) = {Ovy(r,)?) = U, e [P, (6)

The presence of the factors ¢ in the right-hand side ensures that the C,s are
dimensionless. The (' s cannot depend on the Reynolds number, since the limit of
infinite Reynolds number is assumed. For p = 3, it follows from (4) that C, = —3,
which is clearly universal. All the U' s, except for p = 3, must, however, depend on
the detailed geometry of the production of turbulence. In other words, they cannot
be universal.

For p=2 the second-order structure function has the same dimension as turbulent
Kinetic energy

We can interpret (6) as a dependence of kinetic energy on the scale [, provided that [ is
much smaller that /, (length scale of energy-containing eddies).

Hence, kinetic energy on scale fdepends on £°. .



Podejscie alternatywne w jezyku dekompozyciji na szereg Fouriera i liczb falowych
(juz nie Frisch).

For a flow which is homogeneous in space (i.e. statistical properties are independent of
position), a spectral description is very appropriate, allowing us to examine properties
as a function of wavelength. The total kinetic energy, given by

can be written in terms of the spectrum ¢; ;(k)

(4.6)

where ¢; ;(k) is the Fourier transform of the velocity correlation tensor R, ;(r):

';i]?'-.j (k) - (2?11.)3

f cxp(—ik.r)Ry, (r)dr ; Ri(r) = f w(X)u(x 1) (4.7)

R, ;(r) tells us how velocities at points separated by a vector r are related. If we
know these two point velocity correlations, we can deduce E(k). Hence the energy
spectrum has the information content of the two-point correlation.

Uwaga: zauwaz, ze 4.7 zawiera predkosci w punkcie x i x+r, podobnie jak funkcje struktury, zauwaz takze ze pod
catkg 4.5 jest kwadrat predkosci.



F(k) contains directional information. More usually, we want to know the energy at

a particular scale & = vk.k without any interest in separating it by direction. To
find E(k), we integrate over the spherical shell of radius & (in 3-dimensions):
E= fE(k)a’k _ f ng(k)dcrdk _ f E(k)dk (4.8)
0 0
Then 1
E(k) = j{E(k}dJ _ ﬂ{ﬁf:.flj(k)da (4.9)

Assuming 1sotropy:

B(k) = 2nk2¢,(k) (4.10)
where ¢, (k) = ¢;.(k) for all k such that vVkk = k.

Réwnanie na bilans energii w przestrzeni fazowe;.

We have an equation for the evolution of the total kinetic energy E. Equally mter-
esting 1s the evolution of E(k), the energy at a particular wavenumber k. This will
mclude terms which describe the transfer of energy from one scale to another, via
nonlinear mteractions.



To obtain such an equation we first take the Fourier transform of the non-rotating, un-
stratified Boussinesq equations, using the following information about Fourier trans-
forms:

Physical space Fourier space
fi(x,1) fi(k,t)

9f [0z ikif

Vf ifk

V2§ —K*f
f(x,t)g(x,t) [f * g

where [f * g] = |4 =k f(D.1)d(q.t)dp
Then the momentum equation in physical space

O, %, 1 OP O,
— — Y = ——— — U;— (4.11)
ot {J'.r"l', on O : {J'.J'_II-

becomes, 1n fourler space:

0, 12). _ kik; - : i1

(The term on the right hand side is the projection of the Fourier transform of u.Vu
onto the plane perpendicular to k. The F.T. of VP 1s parallel to k, while 1 etc are
all perpendicular to Kk.)

The term on the right hand side shows that the nonlinear terms involve triad inter-
actions between wave vectors such that k = p + q.



Now to obtain the energy equation we multiply eqn 4.12 by w;(k’, t), similarly write an
equation for @;(K’,t) and multiply it by u;(k,t), and add the two equations together,
and 1ntegrate over K' to obtain

5] 5\
(E + Quk;) ¢; ik, t) = Triad interaction terms (4.13)

Making use of eqn 4.10 (i.e. assuming isotropy ), we then have

%E(kt) = T(k,t) — 20k*E(k, ) (4.14)
where T'(k, t) comprises the triad interaction terms. If we examine the integral of this
equation over all k

Y - . . ey . . ‘ - 2 : . 415
a;h%L E(&.)dﬁ._ﬁ T(k.,tjdﬁ.—zuL K2 E(k)dk (4.15)

and note that —2vk*F( k) is the Fourier transform of the dissipation term —»V 1.V 11,
then we see the familiar equation for the total energy budget eqn 4.2 1s recovered only
if .
f Tk, t)dk = 0 (4.16)
0
Hence the nonlinear interactions transfer energy between different wave numbers, but
do not change the total energy.



Now, adding a forcing term to the energy equation in k-space we have the following
equation for energy at a particular wavenumber k:

d .
g; E(k.t) = T(k, 1) + F (k. t) - 20k*E(k, 1) (4.17)
where F'(k,t) 18 the forcing term, and T'(k, 1) is the Kinetic energy transfer, due to
nonlinear interactions. The kinetic energy flux through wave number £ 1s 1I( k, 1),

defined as

(k. t) = f CT )k (4.18)
k:
. ATI(k, )
T(k,t) = — 119
(k1) = =28 (4.9

Now for stationary turbulence
WKAE(k) = T(k) + F(k) (4.20)

If F(k), the forcing, is concentrated on a narrow spectral band centered around a
wave number k;, then for & == k.

Wk*E(k) = T(k) (4.21)



If F(k), the forcing, is concentrated on a narrow spectral band centered around a
wave number k;, then for £ &£ k;,
WkE(k) = T (k) (4.21)

In the limit of v — 0, T'(k) = 0. If the dissipation rate
- / 2wk B (k)dk (4.22)

then
= / F(k (4.23)

so that the rate of dissipation of energy is equal to the rate of injection
of energy. Now in the limit of » — 0, but nonzero F'(k), € must remain nonzero,
in order to balance the energy injection. (This is achieved by [ k2E(k)dk — o).
Then we find the energy flux in the limit v — 0:

II(k)=0,:k <k
[M(k)=€:k>Fk (4.24)
Hence at vanishing viscosity, the kinetic energy flux 1s constant and equal to the
injection rate, for wavenumbers greater than the injection wavenumber k;. Hence
we have the following scenario: Energy i1s input at a rate e at a wavenumber k;, 1s

fluxed to higher wavenumbers at a rate e, and eventually dissipated at very high
wavenumbers at a rate €, even in the hmit of  — 0.



Kolmogorov's 1941 theory for the energy spectrum makes use of the result that e, the
energy 1njection rate, and dissipation rate also controls the flux of energy. Energy
flux 1s independent of wavenumber k&, and equal to € for & > k;. Kolmogorov’'s theory
assumes the imjection wavenumber 1s much less than the dissipation wavenumber
(k; << kg, or large Re). In the intermediate range of scales k; < k < kg neither the
forcing nor the viscosity are explicitly important, but instead the energy flux e and
the local wavenumber &k are the only controlling parameters. Then we can express
the energy density as

E(k) = fl(e k) (4.25)
Now using dimensional analysis:

Quantity Dimension
Wavenumber & 1/L
Energy per unit mass £ U2 ~ L? / T?  we find
Energy spectrum E(k) EL ~ L3/T*
Energy flux e E/T ~ L?/T3

E(k) = Cge** k=2 (4.26)

C're 18 a universal constant known as the Kolmogorov constant. The region of param-
eter space in k where the energy spectrum follows this £=°/2 form is known as the
Inertial range. In this range, energy cascades from the larger scales where 1t was
injected ultimately to the dissipation scale. The theory assumes that the spectra at
any particular £ depends only on spectrally local quantities - 1.e. has no dependence
on k; for example. Hence the possibility for long-range interactions 1s ignored.



We can also derive the Kolmogorov spectrum in the following manner (after Obukhov):
Define an eddy turnover time 7(k) at wavenumber k& as the time taken for a parcel
with energy E(k) to move a distance 1/k. If 7(k) depends only on E(k) and k then,

from dimensional analysis

1/2

(k) ~ [k.EE(ﬁ:)]_ (4.27)

The energy flux can be defined as the available energy divided by the characteristic
time 7. The available energy at a wavenumber k is of the order of KE(k). Then we
have

 kE(k)

ey~ FTERT (4.28)

€

and hence

E(k) ~ /3 =5/3 (4.29)



Wavelength A [m]
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Fic. 5. Power spectral densities S{f) of the same data as presented in Figs. 3 and 4. All
spectra are in units of their variance per frequency: spectra of BBC data are divided by a factor
of 10 for better resolution. For the top panel the frequencies are converted into wavelength
assuming a constant horizontal wind speed of 8 m s™%



Skala Kotmogorowa i inne charakterystyczne skale turbulencji.

Above a certain wavenumber k;, viscosity will become important, and E(k) will
decay more rapidly than in the inertial range. The regime £ = k; 1s known as the
dissipation range. An estimate for k; can be made by assuming
E(k) = CxePk™F kb < k < ka
Ek)=0: k> ky (4.30)

and substituting in eqn 4.22, and integrating between k; and k;. Then we have

/4
The inverse l; = 1/k4 is known as the Kolmogorov scale, the scale at which dissi-
pation becomes important.
/4
V.
lg ~ (El-’"“l) (4.32)

/

Skale Kotmogorowa czesto oznaczamy greckim symbolem n



At the other end of the spectrum, the important lengthscale 1s ;. the integral scale.
the scale of the energy-containing eddies. [; = 1/k;. We can also evaluate [; in terms
of e. We can write

W= U2 = f E(k)dk (4.33)
0

and substituting for E'(k) from eqn 4.26
(2 — f Cre 221753 (4.34)
0

Assume that 1/2 of the energy is contained at scales k > k;. Then

U2 = 6Cy e/ 3k (4.35)
and )
ki ~ 73 (4.36)
so that l; ~ U*® /é. Then the ratio of maximum and minimum dynamically active
scales 274
. : r3 T7.\ " ,
‘!d }L-_?_ 3/ d3/4 . i

where Hey, 1s the Integral Reynolds number. Hence the range of scales goes as
the Reynolds number to the power 3/4. This information is useful in estimating
numerical resolution necessary to simulate turbulence down to the Kolmogorov scale
at a chosen Reynolds number.



Mikroskala Taylora.

A third length scale often used to characterise turbulence is the Taylor microscale:

(4.38)

The Taylor microscale 1s the characteristic spatial scale of the velocity gradients.
Using A, an alternative Reynolds number can be defined:

(4.39)

where Re, ~ Reglji ~ Ei/}..

Taylor microscale Reynolds number
liczba Reynoldsa dla mikroskali Taylora.



